Abstract:
The described embodiments relate generally to electronic devices and more particularly to methods for forming mechanical and electrical connections between components within an electronic device. In one embodiment, an interconnect component such as a flex cable is attached to a substrate such as a printed circuit board. A plurality of apertures can be created in the interconnect component, passing through bonding pads located on one end of the interconnect component. The interconnect component can then be aligned with bonding pads on the substrate with the bonding pads on the interconnect component facing away from the substrate. A conductive compound can be injected into the apertures through the interconnect component, forming a mechanical and electrical connection between the bonding pads. In some embodiments, an adhesive layer can be used to further strengthen the bond between the interconnect component and the substrate.
Abstract:
A temperature triggering ejector system for lock pin soldering type component is provided. There is provided a temperature triggering ejector system for a lock pin soldering type component, lock pins of said component are fixed in through holes of a circuit board and solder is filled in the through holes after soldering, said system comprising: an ejector that is located at one side of the circuit board that is opposed to said component, and has ejector pins aligned with the through holes of the circuit board and a cylinder that drives the ejector pins; a temperature sensor for sensing the temperature of said solder being heated; a controller for driving the ejector pins of the ejector within a solder melting temperature range based on the temperature sensed by the temperature sensor, to eject the lock pins of said component from said circuit board.
Abstract:
The present invention provides a flexible printed circuit board having gold fingers, comprising a base sheet, a metallic layer and a protective sheet. The base sheet has a plurality of voids thereon. The metallic layer is provided on the base sheet, and has at least one plated through hole. The protective sheet is provided on the base sheet and the metallic layer to expose a portion of the metallic layer and the plated through hole. The flexible printed circuit board may electrically be connected to a conductive terminal of a rigid printed circuit board with one gold finger and electrically be connected to a system with another gold finger. The plated through hole has a function of heat conduction and soldering, and the voids of the flexible printed circuit board can provide a space for overflowing solder and heat dissipation.
Abstract:
A connector includes an insulation board, a conductor pattern, a rod-shaped member and a solder. The insulation board is provided with a through hole penetrating from a top face to a bottom face. The conductor pattern covers an internal wall of the through hole. The rod-shaped member includes a first end protruding beyond the bottom face and a second end inside the through hole. The solder closes a gap between the conductor pattern covering the internal wall of the through hole and the rod-shaped member and covers the second end of the rod-shaped member.
Abstract:
An interposer is presented. The interposer includes an interposer base having first and second surfaces. A redistribution layer is disposed on a first surface of the interposer base. The interposer has at least one interposer pad coupled to the redistribution layer. It also includes at least one interposer contact on the second surface. The interposer contact is electrically coupled to the interposer pad via the redistribution layer. The interposer also includes at least one interposer via through the interposer base for coupling the interposer contact to the redistribution layer. The interposer via includes reflowed conductive material of the interposer contact.
Abstract:
Second individual electrodes are formed and arranged in zigzag in two rows on one surface of a flexible sheet, and wirings connected to the second individual electrodes are arranged to pass between adjacent second individual electrodes of the other row. Formed on the other surface of the flexible sheet are electrode connection sections to be connected to the second individual electrodes through through-holes going through the flexible sheet. The electrode connection section has an area larger than the second individual electrode and is connected to an external electrode through solder.
Abstract:
An electronic device comprises an electronic element package and a mounting substrate on which the electronic element package is mounted. The electronic element package has an LGA electrode. The mounting substrate has a through-hole having a conductor which covers an inner wall. The LGA electrode has an area larger than an opening area of the through-hole on a side facing the LGA electrode. The electronic element package is mounted on the mounting substrate so that at least a part of the opening of the through-hole overlaps with the LGA electrode. The LGA electrode and the conductor of the through-hole are electrically connected to a conductive material provided inside the through-hole. In the LGA electrode, at least a part of the region that does not overlap with the opening of the through-hole is joined to the mounting substrate by an adhesive.
Abstract:
A semiconductor package and associated methods, the semiconductor package including a substrate including a socket, and connection terminals including a solder ball and a supporting portion extending from the solder ball into the socket.
Abstract:
The present invention provides a printed circuit board capable of sufficiently ensuring joint strength and joint reliability when mounting a surface mounted device, and a mounting structure for a surface mounted device using the printed circuit board. A BGApackage as a surface mounted device includes a plurality of solder balls arranged thereon and a printed circuit board includes a plurality of mounting pads corresponding respectively to the plurality of solder balls. The BGApackage is connected to the mounting pads on the printed circuit board due to melting of the solder balls, thereby mounted on the printed circuit board. A concave via hole is formed on each of the mounting pads having a circular surface shape and a part of the solder ball is in the convex via hole. Here, the center of the convex via hole is apart from the center of each of the mounting pads by at least the diameter of the concave via hole.
Abstract:
A method is disclosed in which a blind via in a PCB is filled. The vias are plated with a conductor and then with a fusible metal of lower melting point than the conductor. The plated vias are covered with a photoresist and the fusible metal is removed at locations on the PCB other than where the photoresist is disposed. The photoresist is removed and flux is provided on the PCB before the PCB is heated. The heated fusible metal flows into the via.