Abstract:
An exemplary printable composition of a liquid or gel suspension of diodes generally includes a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary apparatus may include a plurality of diodes; at least a trace amount of a first solvent; and a polymeric or resin film at least partially surrounding each diode of the plurality of diodes. Various exemplary diodes have a lateral dimension between about 10 to 50 microns and about 5 to 25 microns in height. Other embodiments may also include a plurality of substantially chemically inert particles having a range of sizes between about 10 to about 50 microns.
Abstract:
A flexible light sheet includes a bottom conductor layer overlying a flexible substrate. An array of vertical light emitting diodes (VLEDs) is printed as an ink over the bottom conductor layer so that bottom electrodes of the VLEDs electrically contact the bottom conductor layer. A top electrode of the VLEDs is formed of a first transparent conductor layer, and a temporary hydrophobic layer is formed over the first transparent conductor layer. A dielectric material is deposited between the VLEDs but is automatically de-wetted off the hydrophobic layer. The hydrophobic layer is then removed, and a second transparent conductor layer is deposited to electrically contact the top electrode of the VLEDs. The VLEDs can be made less than 10 microns in diameter since no top metal bump electrode is used. The VLEDs are illuminated by a voltage differential between the bottom conductor layer and the second transparent conductor layer.
Abstract:
A layer of microscopic printed VLEDs is sandwiched between a first conductor layer and a transparent second conductor layer so that light exits the second conductor layer. Touch sensor electrodes are formed overlying the VLED layer so that the VLEDs illuminate the touch sensor. In one embodiment, the touch sensor electrodes are independent from the conductor layers for the VLEDs. In another embodiment, the transparent second conductor layer also serves as a touch sensor electrode. In another embodiment, both the conductor layers for the VLEDs serve as touch sensor electrodes. The conductor layers for the VLEDs may be segmented in groups to selectively illuminate groups of the VLEDs under each touch sensor position. The touch sensor electrodes may be transparent or opaque, depending on whether the electrodes are intended to allow the VLED light to pass through.
Abstract:
An LED module is disclosed containing an integrated driver transistor (e.g, a MOSFET) in series with an LED. In one embodiment, LED layers are grown over a substrate. The transistor regions are formed over the same substrate. After the LED layers, such as GaN layers, are grown to form the LED portion, a central area of the LED is etched away to expose a semiconductor surface in which the transistor regions are formed. A conductor connects the transistor in series with the LED. Another node of the transistor is electrically coupled to an electrode on the bottom surface of the substrate. In one embodiment, an anode of the LED is connected to one terminal of the module, one current carrying node of the transistor is connected to a second terminal of the module, and the control terminal of the transistor is connected to a third terminal of the module.
Abstract:
A system of interconnectable LED light emitting tiles includes identical tiles having a light emitting area that extends all the way to two contiguous edges. One set of anode and cathode interconnects is accessible from the underside of one edge of the tile, and a second set of anode and cathode interconnects is accessible from the top side of an opposite edge of the tile. The second set of anode and cathode interconnects extends out from the light emitting area on the top side. When tiles are interconnected together, their interconnection edges overlap to make the electrical interconnections, while the light emitting areas of all the tiles abut to form a large seamless light emitting area. The flexible tiles may be mounted on a backplane that includes anode and cathode conductors for electrically interconnecting the tiles. A large, addressable display may be formed using interconnected tiles.
Abstract:
A printed energy storage device includes a first electrode, a second electrode, and a separator between the first and the second electrode. At least one of the first electrode, the second electrode, and the separator includes frustules, for example of diatoms. The frustules may have a uniform or substantially uniform property or attribute such as shape, dimension, and/or porosity. A property or attribute of the frustules can also be modified by applying or forming a surface modifying structure and/or material to a surface of the frustules. A membrane for an energy storage device includes frustules. An ink for a printed film includes frustules.
Abstract:
A system of interlocking LED panel tiles includes a first tile having at least one layer of light emitting diodes (LEDs) provided on a substrate, where the substrate is mounted on a substantially rectangular supporting plate having interlocking features. The substrate overlaps the interlocking features. The first tile has a set of positive and negative voltage conductors running between the two sets of opposite edges of the tile as busses. Multiple identical tiles are provided. Each tile has the interlocking features along their edges that firmly physically connect to abutting tiles to create a lamp having any pattern of tiles selected by the user. By interlocking the tiles, the positive and negative conductors are automatically connected to electrically connect the LEDs in the tiles in parallel, and the interlocking features are hidden by the overlying substrate. Additional conductors may be used to provide greater interconnection flexibility.
Abstract:
A PV panel uses an array of small silicon sphere diodes (10-300 microns in diameter) connected in parallel. The spheres are embedded in an uncured aluminum-containing layer, and the aluminum-containing layer is heated to anneal the aluminum-containing layer as well as p-dope the bottom surface of the spheres. A phosphorus-containing layer is deposited over the spheres to dope the top surface n-type, forming a pn junction. The phosphorus layer is then removed. A conductor is deposited to contact the top surface. Alternatively, the spheres are deposited with a p-type core and an n-type outer shell. After deposition, the top surface is etched to expose the core. A first conductor layer contacts the bottom surface, and a second conductor layer contacts the exposed core. A liquid lens material is deposited over the rounded top surface of the spheres and cured to provide conformal lenses designed to increase the PV panel efficiency.
Abstract:
Small silicon spheres, less than 200 um in diameter, are desirable for use in forming solar panels. To make such small spheres, a large-area glass substrate has etched in its surface millions of identical indentations, such as having diameters less than 200 um. A silicon ink, formed of a fluid containing nanoparticles of milled silicon, is then deposited over the substrate to completely fill the indentations, and the excess ink is removed. The ink is heated to evaporate the fluid and melt the silicon nanoparticles. A photonic system is used to rapidly melt the silicon. The melted silicon forms a sphere in each indentation by surface tension. Since the density of the silicon in the ink and the volume of each indentation are well defined, the volume of each sphere is well defined. The substrates are reusable. Hundreds of millions of spheres may be produced per minute using the process.
Abstract:
Vias (holes) are formed in a wafer or a dielectric layer. A low viscosity conductive ink, containing microscopic metal particles, is deposited over the top surface of the wafer to cover the vias. An external force is applied to urge the ink into the vias, including an electrical force, a magnetic force, a centrifugal force, a vacuum, or a suction force for outgassing the air in the vias. Any remaining ink on the surface is removed by a squeegee, spinning, an air knife, or removal of an underlying photoresist layer. The ink in the vias is heated to evaporate the liquid and sinter the remaining metal particles to form a conductive path in the vias. The resulting wafer may be bonded to one or more other wafers and singulated to form a 3-D module.