Abstract:
A semiconductor thermoelectric cooler is configured to direct heat through channels of the cooler. The thermoelectric cooler has multiple electrodes and a first dielectric material positioned between side surfaces of the electrodes. A second dielectric material, different from the first dielectric material, is in contact with top surfaces of the electrodes. The first dielectric material extends above the top surface of the electrodes, separating portions of the second dielectric material, and is in contact with a portion of the top surfaces of the electrodes. The first dielectric material has a thermal conductivity different than a thermal conductivity of the second dielectric material. A ratio of the first dielectric material to the second dielectric material in contact with the top surface of the electrodes may be selected to control the heat retention. The semiconductor thermoelectric cooler may be manufactured using thin film technology.
Abstract:
A process for manufacturing a 3D or PoP semiconductor package includes forming a redistribution layer on a reconstituted wafer, then laser drilling a plurality of apertures in the reconstituted wafer, extending from an outer surface of the reconstituted wafer to intersect electrical traces in the first redistribution layer. A solder ball is then positioned adjacent to an opening of each of the apertures. The solder balls are melted and allowed to fill the apertures, making contact with the respective electrical traces and forming a plurality of solder columns. The outer surface of the reconstituted wafer is then planarized, and a second redistribution layer is formed on the planarized surface. The solder columns serve as through-vias, electrically coupling the first and second redistribution layers on opposite sides of the reconstituted wafer.
Abstract:
A fan-out wafer level package is provided with a semiconductor die embedded in a reconstituted wafer. A redistribution layer is positioned over the semiconductor die, and includes a land grid array on a face of the package. A copper heat spreader is formed in the redistribution layer over the die in a same layer as a plurality of electrical traces configured to couple circuit pads of the semiconductor die to respective contact lands of the land grid array. In operation, the heat spreader improves efficiency of heat transfer from the die to the circuit board.
Abstract:
A process for forming a metal interconnection in an integrated circuit includes forming a first metal layer and a second metal layer on the first metal layer. Photoresist is placed on the second metal layer and patterned to form a mask. The second metal layer is etched. The mask is then removed and the first metal layer is patterned with the second metal layer acting as mask for the first metal layer.
Abstract:
A silicon on insulater (SOI) wafer is provided. A dielectric layer is formed on an active silicon substrate of the wafer. The dielectric layer is patterned and etched to expose selected portions of the silicon substrate. Impurities are then introduced into the exposed portions of the silicon substrate to act as gettering regions. The dielectric layer is then removed and an epitaxial layer of silicon is grown on the silicon substrate. Trenches are etched in the epitaxial layer of silicon through the gettering regions, partially removing the gettering regions and any contaminants contained therein. Remaining portions of the gettering regions still act as gettering regions during subsequent process steps.
Abstract:
A flip chip structure formed on a semiconductor substrate includes a first plurality of copper pillars positioned directly over, and in electrical contact with respective ones of a plurality of contact pads on the front face of the semiconductor substrate. A layer of molding compound is positioned on the front face of the substrate, surrounding and enclosing each of the first plurality of pillars and having a front face that is coplanar with front faces of each of the copper pillars. Each of a second plurality of copper pillars is positioned on the front face of one of the first plurality of copper pillars, and a solder bump is positioned on a front face of each of the second plurality of pillars.
Abstract:
A heat spreader is provided for use with a thermally enhanced flip-chip ball grid array package. In the package, a semiconductor die is positioned front-side down on a package substrate, coupled thereto via solder balls. Passive devices can also be coupled to the substrate alongside the die. The heat spreader is positioned over the substrate and die, in thermal contact with the die. A projection in the center of the heat spreader makes contact with the back surface of the die via a thermal interface material, to draw heat from the die for improved cooling. The projection enables close contact with a thinned die while accommodating thicker passive devices positioned around the die on the substrate.
Abstract:
Fan-out wafer level packaging includes an integrated circuit having a top surface, a bottom surface, a plurality of side surfaces, and a bond pad defined on the top surface. A layer of encapsulant substantially surrounds the side surfaces of the integrated circuit, the layer of encapsulant having a height substantially equal to a height of the integrated circuit. A bump is spaced apart from the integrated circuit, and a redistribution layer electrically couples the bond pad of the integrated circuit to the bump.
Abstract:
In automated gluing systems for semiconductor device manufacture, an automatic shutter system is provided for use with an adhesive dispenser that is configured to deposit adhesive for joining elements during final assembly processes. A shutter is configured to interpose itself between a needle tip of the dispenser and a working surface, on which devices in process are positioned, while the dispenser is in a ready position and not actually delivering adhesive, and to withdraw from the interposed position as, or immediately before the needle tip descends to a dispensing position to deposit adhesive on a device. In this way, drops of adhesive that fall from the needle tip while in the ready position are captured by the shutter and prevented from falling onto a device in process in an unintended location of the device.
Abstract:
Described herein are techniques for forming, during wafer processing, a conductive shielding layer for a chip formed from a wafer. The conductive shielding layer can be formed on multiple sides of a chip prior to dicing the wafer to separate the chip from the wafer. A wafer may be processed to form trenches that extend substantially through the wafer. The trenches may be formed opposite scribe lines that identify boundaries between chips of the wafer and may extend through the wafer toward the scribe lines. A shielding layer may be formed along the trenches.