Abstract:
An approach to creating a semiconductor structure for a dielectric layer over a void area includes determining a location of a void area of the topographical semiconductor feature. A second dielectric layer is deposited on a first dielectric layer and a top surface of a topographical semiconductor feature. The second dielectric layer is patterned to one or more portions, wherein at least one portion of the patterned second dielectric layer is over the location of the void area of the topographical semiconductor feature. A first metal layer is deposited over the second dielectric layer, at least one portion of the first dielectric layer, and a portion of the top surface of the topographical semiconductor feature. A chemical mechanical polish of the first metal layer is performed, wherein the chemical mechanical polish reaches the top surface of at least one of the one or more portions of the second dielectric layer.
Abstract:
A method including forming a first dielectric layer above a conductive pad and above a metallic structure, the conductive pad and the metallic structure are each located within an interconnect level above a substrate, forming a first opening and a second opening in the first dielectric layer, the first opening is aligned with and exposes the conductive pad and the second opening is aligned with and exposes the metallic structure, and forming a metallic liner on the conductive pad, on the metallic structure, and above the first dielectric layer. The method may further include forming a second dielectric layer above the metallic liner, and forming a third dielectric layer above the second dielectric layer, the third dielectric layer is thicker than either the first dielectric layer or the second dielectric layer.
Abstract:
The embodiments of the present invention relate to semiconductor device manufacturing, and more particularly, a method of temporarily bonding a semiconductor wafer to a wafer carrier with a multi-layered contact layer as well as a structure. A method is disclosed that includes: forming a first layer on a surface of a semiconductor wafer; forming a second layer on the first layer; bonding a perforated carrier to the second layer; and removing the semiconductor wafer from the perforated carrier. The first layer may be composed of an adhesive. The second layer may be composed of a material having a higher outgassing temperature than the first layer.
Abstract:
Various embodiments include methods of forming interconnect structures, and the structures formed by such methods. In one embodiment, an interconnect structure can include: a photosensitive polyimide (PSPI) layer including a pedestal portion; a controlled collapse chip connection (C4) bump overlying the pedestal portion of the PSPI layer; a solder overlying the C4 bump and contacting a side of the C4 bump; and an underfill layer abutting the pedestal portion of the PSPI and the C4 bump, wherein the underfill layer and the solder form a first interface separated from the PSPI pedestal.
Abstract:
Solder bump connections and methods for fabricating solder bump connections. A passivation layer is formed on a dielectric layer. Via openings extend through the passivation layer from a top surface of the passivation layer to a metal line in the passivation layer. A conductive layer is formed on the top surface of the passivation layer and within each via opening. When the passivation layer and the conductive layer are planarized, a plug is formed that includes sections in the via openings. Each section is coupled with the metal line.
Abstract:
An apparatus and method of etching. The apparatus including a support substrate having a top surface; a stack of a multiplicity of layers formed on the top surface of the support substrate from a lowermost layer on the top surface of the support substrate to a topmost layer that is furthest from the support substrate; and wherein an entirety of the top surface of the topmost layer is not planar and at least one of the multiplicity of layers that is not the topmost layer is an electrically conductive layer.
Abstract:
A method of monitoring a temperature of a plurality of regions in a substrate during a deposition process, the monitoring of the temperature including: forming, in the monitored plurality of regions, a plurality of metal structures each with a different metal pattern density, where each metal pattern density corresponds to a threshold temperature at or above which metal voids and surface roughness are formed in the plurality of metal structures, and detecting metal voids and surface roughness in the plurality of metal structures to determine the temperature of the monitored plurality of regions.
Abstract:
A topographical structure is formed within an integrated circuit (IC) chip passivation layer. The topographical structure includes a trench extending below the top surface of the passivation layer and above the top surface of an uppermost inter-metallic dielectric layer underlying the passivation layer associated with the uppermost wiring line of the IC chip. The topographical structure may also include a ridge above the top surface of the passivation layer along the perimeter of the trench. The topographical structure may be positioned between a series of IC chip contact pads and/or may be positioned around a particular IC chip contact pad. The topographical structures increase the surface area of the passivation layer resulting in increased underfill bonding to the passivation layer. The topographical structures also influence capillary movement of capillary underfill and may be positioned to speed up, slow down, or divert the movement of the capillary underfill.
Abstract:
Systems and methods are provided for implementing a crystal oscillator to monitor and control semiconductor fabrication processes. More specifically, a method is provided for that includes performing at least one semiconductor fabrication process on a material of an integrated circuit (IC) disposed within a processing chamber. The method further includes monitoring by at least one electronic oscillator disposed within the processing chamber for the presence or absence of a predetermined substance generated by the at least one semiconductor fabrication process. The method further includes controlling the at least one semiconductor fabrication process based on the presence or absence of the predetermined substance detected by the at least one electronic oscillator.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to photonics chips and methods of manufacture. A structure includes: a photonics chip having a grated optical coupler; an interposer attached to the photonics chip, the interposer having a grated optical coupler; an optical epoxy material provided between the grated optical coupler of the photonics chip and the grated optical coupler of the interposer; and epoxy underfill material provided at interstitial regions between the photonics chip and the interposer which lie outside of an area of the grated optical couplers of the photonics chip and the interposer.