Abstract:
A printed wiring board includes a support plate, and a build-up wiring layer including resin insulating layers and conductor layers and having a first surface and a second surface on the opposite side with respect to the first surface such that the support plate is positioned on the first surface of the build-up wiring layer. The resin insulating layers in the build-up wiring layer include a first resin insulating layer that forms the second surface of the build-up wiring layer, and the build-up wiring layer includes first conductor pads embedded in the first resin insulating layer such that each of the first conductor pads has an exposed surface exposed from the second surface of the build-up wiring layer.
Abstract:
A printed wiring board includes a multilayer body, a first wiring layer formed on first surface of the body and including first pads, a second wiring layer embedded into second surface of the body and including second and third pads, conductor posts formed on the third pads, and via conductors formed in the body and having diameter reducing toward the second surface of the body. Each third pad has metal foil formed thereon such that each post is formed on the foil, the second wiring layer is formed such that the second pads are positioned to connect an electronic component in central portion of the second surface of the body and the third pads are positioned to connect another board in outer edge portion of the second surface of the body, and the second pads are formed such that each second pad has exposed surface recessed from the second surface.
Abstract:
A printed wiring board includes a first circuit substrate having a first surface and a second surface on the opposite side, and a second circuit substrate having a third surface and a fourth surface on the opposite side such that the first circuit substrate is laminated on the third surface and that the first surface and the third surface are opposing each other. The second circuit substrate has a mounting area on the third surface and includes pads positioned to mount an electronic component in the mounting area and a connection wire structure connected to the pads, and the first circuit substrate includes through-hole conductors extending from the first surface to the second surface and connected to the pads through the connection wire structure and has an opening portion formed through the first circuit substrate such that the opening portion is exposing the pads formed in the mounting area.
Abstract:
A printed wiring board includes a buildup wiring layer including resin insulation layers and conductive layers such that the conductive layers are laminated on the resin insulation layers, respectively, first pads formed in a center portion of a first surface of the buildup wiring layer and positioned to connect an electronic component, second pads formed on a periphery portion of the first surface of the buildup wiring layer and positioned to connect an external wiring board, a solder layer including a plating material and formed on the first pads such that the solder layer is formed on each of the first pads, conductive posts including a plating material and formed on the second pads, respectively, and a seed layer including first seed layer portions formed between the first pads and the solder layer and second seed layer portions formed between the second pads and the conductive posts.
Abstract:
A flex-rigid wiring board includes a flexible substrate, a non-flexible substrate positioned such that the non-flexible substrate is extending in horizontal direction of the flexible substrate, a first wiring layer formed on first surfaces of the flexible and non-flexible substrates, a second wiring layer embedded in second surfaces of the flexible and non-flexible substrates, a first insulating layer covering the first surfaces of the flexible and non-flexible substrates and having an opening exposing a portion of the first surface of the flexible substrate, and a second insulating layer covering the second surfaces of the flexible and non-flexible substrates and having an opening exposing a portion of the second surface of the flexible substrate. The first wiring layer includes non-embedded wirings on the first surfaces of the flexible and non-flexible substrates, and the second wiring layer includes embedded wirings in the second surfaces of the flexible and non-flexible substrates.
Abstract:
A printed wiring board includes a support plate, a laminate formed on the support plate and including first conductor pads on first surface side of the laminate and second conductor pads on second surface side of the laminate, and a solder resist layer interposed between the support plate and laminate and having openings formed such that the openings are exposing the first pads. The laminate includes a resin insulating layer and has a first surface on the first surface side and a second surface on the second surface side on the opposite side, and a via conductor structure penetrating from the first surface to the second surface of the laminate such that the via structure includes via conductors formed in the insulating layer and tapering from the first surface side toward second surface side of the laminate, and the second pads are protruding from the second surface of the laminate.
Abstract:
A printed wiring board includes a support plate, a laminate formed on the support plate and including first conductor pads on first surface side of the laminate and first via conductors on second surface side of the laminate, and a solder resist layer interposed between the plate and the laminate and having openings formed such that the openings are exposing the first pads. The laminate has first surface on the first surface side and second surface on the second surface side on the opposite side and includes a first resin insulating layer forming the second surface of the laminate, and the first conductors are formed through the first insulating layer such that the first vias are tapering from the first surface side toward the second surface side of the laminate and have end surfaces recessed from the second surface of the laminate on the second surface side of the laminate.
Abstract:
An electronic circuit apparatus includes a circuit substrate, a heat generating component positioned on the circuit substrate, a metal plate forming a portion of an inner layer of the circuit substrate and protruding from a side surface of the circuit substrate such that the metal plate has an exposed portion exposed to outside the circuit substrate, and an external component connected to the exposed portion of the metal plate and including one of an external heat dissipation component and an external cooling component.
Abstract:
A method for manufacturing a combined wiring board includes preparing multiple wiring boards, preparing a metal frame having opening portions which accommodate the boards, respectively, positioning the boards in the opening portions of the frame, respectively, and forming multiple crimped portions in the frame by plastic deformation such that the sidewalls of the boards bond to sidewalls of the opening portions in the frame. The preparing of the boards includes forming the sidewalls of the boards such that when the boards are positioned in the opening portions of the frame, the sidewalls of the boards form wide-space portions and narrow-space portions with respect to the sidewalls of the opening portions in the frame, and the forming of the crimped portions includes generating the deformation such that the sidewalls of the opening portions in the frame abut the narrow-space portions of the boards before the wide-space portions of the boards.
Abstract:
A method for manufacturing a combined wiring board includes preparing wiring boards, preparing a metal frame having opening portions formed to accommodate the wiring boards, respectively, positioning the wiring boards in the opening portions in the metal frame, and forming crimped portions in the metal frame by plastic deformation such that sidewalls of the metal frame in the opening portions bond sidewalls of each of the wiring boards. The crimped portions are formed such that the crimped portions in the metal frame have amounts of the plastic deformation which are set different for positions of the crimped portions in the metal frame.