Abstract:
Methods are provided for dimension-controlled via formation over a circuit structure, including over multiple adjacent conductive structures. The method(s) includes, for instance, providing a patterned multi-layer stack structure above the circuit structure, the stack structure including at least one layer, and a pattern transfer layer above the at least one layer, the pattern transfer layer being patterned with at least one via opening; providing a sidewall spacer layer within the at least one via opening to form at least one dimension-controlled via opening; and etching through the at least one layer of the stack structure using the at least one dimension-controlled via opening to facilitate providing the via(s) over the circuit structure. In one implementation, the stack structure includes a trench-opening within a patterned hard mask layer disposed between a dielectric layer and a planarization layer, and the via(s) is partially self-aligned to the trench.
Abstract:
A method for eliminating interlayer dielectric (ILD) dishing and controlling gate height uniformity is provided. Embodiments include forming a plurality of polysilicon gates over a substrate, each gate having spacers formed on sides of the polysilicon gates and a nitride cap formed on an upper surface; forming a gapfill material between adjacent polysilicon gates; forming an oxide over the gapfill material between the adjacent polysilicon gates; removing the nitride caps; removing a portion of the oxide between the adjacent polysilicon gates, forming a recess; and forming an ILD cap layer in the recess between the adjacent polysilicon gates.
Abstract:
Aspects of the present invention generally relate to approaches for forming a semiconductor device such as a TSV device having a “buffer zone” or gap layer between the TSV and transistor(s). The gap layer is typically filled with a low stress, thin film fill material that controls stresses and crack formation on the devices. Further, the gap layer ensures a certain spatial distance between TSVs and transistors to reduce the adverse effects of temperature excursion.
Abstract:
Integrated circuits with improved gate structures and methods for fabricating integrated circuits with improved gate structures are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a semiconductor substrate with fin structures. A gate-forming material is deposited over the semiconductor substrate and fin structures. The method includes performing a first etch process to etch the gate-forming material to form a gate line having a first side and a second side. The first side and second side of the gate line are bounded with material. The method includes performing a second etch process to etch a portion of the gate line bound by the material to separate the gate line into adjacent gate structures and to define a tip-to-tip distance between the adjacent gate structures.
Abstract:
A method of introducing N/P dopants in PMOS and NMOS fins at the SSRW layer without complicated processing and the resulting device are provided. Embodiments include forming a plurality of p-type and n-type fins on a substrate, the plurality of p-type and n-type fins formed with an ISSG or pad oxide layer; performing an n-well implant into the substrate through the ISSG or pad oxide layer; performing a first SRPD on the ISSG or pad oxide layer of the plurality of p-type fins; performing a p-well implant into the substrate through the ISSG or pad oxide layer; performing a second SRPD on the ISSG or pad oxide layer of the plurality of n-type fins; and driving the n-well and p-well implants and the SRPD dopants into a portion of the plurality of p-type and n-type fins.
Abstract:
A lithographic stack over a raised structure (e.g., fin) of a non-planar semiconductor structure, such as a FinFET, includes a bottom layer of spin-on amorphous carbon or spin-on organic planarizing material, a hard mask layer of a nitride and/or an oxide on the spin-on layer, a layer of a developable bottom anti-reflective coating (dBARC) on the hard mask layer, and a top layer of photoresist. The stack is etched to expose and recess the raised structure, and epitaxial structure(s) are grown on the recess.
Abstract:
Embodiments of the present invention provide improved methods for fabricating field effect transistors such as finFETs. Stressor regions are used to increase carrier mobility. However, subsequent processes such as deposition of flowable oxide and annealing can damage the stressor regions, diminishing the amount of stress that is induced. Embodiments of the present invention provide a protective layer of silicon or silicon oxide over the stressor regions prior to the flowable oxide deposition and anneal.
Abstract:
Aspects of the present invention generally relate to approaches for forming a semiconductor device such as a TSV device having a “buffer zone” or gap layer between the TSV and transistor(s). The gap layer is typically filled with a low stress thin film fill material that controls stresses and crack formation on the devices. Further, the gap layer ensures a certain spatial distance between TSVs and transistors to reduce the adverse effects of temperature excursion.
Abstract:
Integrated circuits with improved gate structures and methods for fabricating integrated circuits with improved gate structures are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a semiconductor substrate with fin structures. A gate-forming material is deposited over the semiconductor substrate and fin structures. The method includes performing a first etch process to etch the gate-forming material to form a gate line having a first side and a second side. The first side and second side of the gate line are bounded with material. The method includes performing a second etch process to etch a portion of the gate line bound by the material to separate the gate line into adjacent gate structures and to define a tip-to-tip distance between the adjacent gate structures.
Abstract:
A method for flowable oxide deposition is provided. An oxygen source gas is increased as a function of time or film depth to change the flowable oxide properties such that the deposited film is optimized for gap fill near a substrate surface where high aspect ratio shapes are present. The oxygen gas flow rate increases as the film depth increases, such that the deposited film is optimized for planarization quality at the upper regions of the deposited film.