Abstract:
Processing of dispatch calls in a multi-site communication system begins when a source communication unit initiates a request for a dispatch call. The request is routed to a controller which assigns a controlled device to support the request. In addition, the controller identifies the destination communication units, which site each of the destination units are in, and what controlled devices are needed to support the dispatch call. Having identified the controlled devices, the controller assigns all of the controlled devices needed the same temporary network address. With all the controlled devices having the same temporary network address, the controlled device assigned to support the request can transmit the messages generated by the source communication unit to other controlled devices using the temporary network address. Thus only one representation of a message produced by the source communication unit is transmitted from the assigned controlled device.
Abstract:
A communication unit may operate in either a trunking communication system and a cellular communication system when the coverage areas of each system overlap. Typically, the communication unit is affiliated with the trunking communication system and operates normally therein. When a call is received or being placed via the cellular communication system, the communication unit transfers its affiliation to the cellular communication system and operates therein. The communication unit is prompted by the trunking communication system to transfer its affiliation for incoming calls and does so automatically for outgoing calls. Once the communication ends, the communication unit transfers its affiliation back to the trunking communication system within a predetermined period of time.
Abstract:
A robust mechanical structure is provided to prevent small foundation structures formed on a substrate from detaching from the substrate surface. The strengthened structure is formed by plating a foundation metal layer on a seed layer and then embedding the plated foundation structure in an adhesive polymer material, such as epoxy. Components, such as spring probes, can then be constructed on the plated foundation. The adhesive polymer material better assures the adhesion of the metal foundation structure to the substrate surface by counteracting forces applied to an element, such as a spring probe, attached to the plated foundation.
Abstract:
Contact structures exhibiting resilience or compliance for a variety of electronic components are formed by bonding a free end of a wire to a substrate, configuring the wire into a wire stem having a springable shape, severing the wire stem, and overcoating the wire stem with at least one layer of a material chosen primarily for its structural (resiliency, compliance) characteristics. A variety of techniques for configuring, severing, and overcoating the wire stem are disclosed. In an exemplary embodiment, a free end of a wire stem is bonded to a contact area on a substrate, the wire stem is configured to have a springable shape, the wire stem is severed to be free-standing by an electrical discharge, and the free-standing wire stem is overcoated by plating. A variety of materials for the wire stem (which serves as a falsework) and for the overcoat (which serves as a superstructure over the falsework) are disclosed. Various techniques are described for mounting the contact structures to a variety of electronic components (e.g., semiconductor wafers and dies, semiconductor packages, interposers, interconnect substrates, etc.), and various process sequences are described. The resilient contact structures described herein are ideal for making a “temporary” (probe) connections to an electronic component such as a semiconductor die, for burn-in and functional testing. The self-same resilient contact structures can be used for subsequent permanent mounting of the electronic component, such as by soldering to a printed circuit board (PCB). An irregular topography can be created on or imparted to the tip of the contact structure to enhance its ability to interconnect resiliently with another electronic component. Among the numerous advantages of the present invention is the great facility with which the tips of a plurality of contact structures can be made to be coplanar with one another. Other techniques and embodiments, such as wherein the falsework wirestem protrudes beyond an end of the superstructure, or is melted down, and wherein multiple free-standing resilient contact structures can be fabricated from loops, are described.
Abstract:
Temporary connections to spring contact elements extending from an electronic component such as a semiconductor device are made by urging the electronic component, consequently the ends of the spring contact elements, vertically against terminals of an interconnection substrate, or by horizontally urging terminals of an interconnection substrate against end portions of the spring contact elements. A variety of terminal configurations are disclosed.
Abstract:
A robust mechanical structure is provided to prevent small foundation structures formed on a substrate from detaching from the substrate surface. The strengthened structure is formed by plating a foundation metal layer on a seed layer and then embedding the plated foundation structure in an adhesive polymer material, such as epoxy. Components, such as spring probes, can then be constructed on the plated foundation. The adhesive polymer material better assures the adhesion of the metal foundation structure to the substrate surface by counteracting forces applied to an element, such as a spring probe, attached to the plated foundation.
Abstract:
A method and apparatus for reducing echo feedback in a wireless communication system (10) is accomplished when a receiving communication unit (24) senses a feedback signal, or echo, via an ancillary communication path. The receiving communication unit is a targeted recipient of an original audio signal generated by a transmitting communication unit (22), where the original audio signal (42) is conveyed to the receiving communication unit. Upon detecting the feedback signal and determining that it exceeds a feedback threshold, the receiving communication unit attenuates an audible output of the original signal to reduce echo to the transmitting communication unit. In addition, the receiving communication unit, and/or the transmitting communication unit include echo canceller to further minimize the echo within the digital communication system.
Abstract:
A method and apparatus for reducing echo feedback in a wireless communication system (10) is accomplished when a receiving communication unit (24) senses a feedback signal, or echo, via an ancillary communication path. The receiving communication unit is a targeted recipient of an original audio signal generated by a transmitting communication unit (22), where the original audio signal (42) is conveyed to the receiving communication unit. Upon detecting the feedback signal and determining that it exceeds a feedback threshold, the receiving communication unit attenuates an audible output of the original signal to reduce echo to the transmitting communication unit. In addition, the receiving communication unit, and/or the transmitting communication unit include echo canceller to further minimize the echo within the digital communication system.
Abstract:
Group communications between subscribers (20, 22) affiliated with a terrestrial communication system (12, 14) and subscribers (46, 48) affiliated with a satellite communication system (10) is begun when a subscriber has initiated a group communication request. The request is provided, via a controller (i.e., a terrestrial system controller or satellite system controller depending on which communication system the requesting subscriber is affiliated with), to a systems interface (36). Upon receiving the request, the systems interface determines whether subscribers that are identified to participate in the group communication are located in the terrestrial system and/or the satellite system. If the group of subscribers have members in both communication systems, the systems interface establishes satellite communication links for each subscriber affiliated with the satellite communication system and establishes a terrestrial communication link for subscribers affiliated with a terrestrial communication system. Once the communication links are established, the systems interface arbitrates transmissions of the group of subscribers. The arbitration of transmissions insures that each subscriber in the group of subscribers receives the transmission.
Abstract:
A semiconduct chip assembly includes a chip, terminals permanently electrically connected to the chip by flexible leads and a resilient element or elements for biasing the terminals away from the chip. The chip is permanently engaged with a substrate having contact pads so that the terminals are disposed between the chip and the substrate and the terminals engage the contact pads under the influence of the force applied by the resilient element. The terminals typically are provided on a flexible sheet-like dielectric interposer and the resilient element is disposed between the interposer and the chip. The assembly of the chip and the terminals can be tested prior to engagement with the substrate. Because engagement of this assembly with the substrate does not involve soldering or other complex bonding processes, it is reliable. The assembly can be extremely compact and may occupy an area only slightly larger than the area of the chip itself.