Abstract:
A light-emitting element according to the present invention includes a semiconductor light-emitting element having a front surface and a rear surface so that light is extracted from the rear surface, and having a first n-side electrode and a first p-side electrode on the front surface, and a support element having a conductive substrate having a front surface and a rear surface as well as a second n-side electrode and a second p-side electrode formed on the front surface of the conductive substrate, the first n-side electrode and the second n-side electrode, and the first p-side electrode and the second p-side electrode are so bonded to one another respectively that the semiconductor light-emitting element is supported by the support element in a facedown posture downwardly directing the front surface, and the support element has an n-side external electrode and a p-side external electrode formed on the rear surface of the conductive substrate, a conductive via passing through the conductive substrate from the front surface up to the rear surface for electrically connecting the second n-side electrode and the n-side external electrode and/or the second p-side electrode and the p-side external electrode with each other, and an insulating film formed between the via and the conductive substrate to cover the side surface of the via.
Abstract:
A chip part includes a substrate, an element formed on the substrate, and an electrode formed on the substrate. A recess and/or projection expressing information related to the element is formed at a peripheral edge portion of the substrate.
Abstract:
A chip part includes a substrate, an element formed on the substrate, and an electrode formed on the substrate. A recess and/or projection expressing information related to the element is formed at a peripheral edge portion of the substrate.
Abstract:
A chip component includes a chip component main body, an electrode pad formed on a top surface of the main body, a protective film covering the top surface of the main body and having a contact hole exposing the pad, and an external connection electrode electrically connected to the pad via the hole and having a protruding portion, which, in a plan view looking from a direction perpendicular to a top surface of the pad, extends to a top surface of the film and protrudes further outward than a region of contact with the pad over the full periphery of an edge portion of the hole. A method for manufacturing the component includes forming the pad on the main body's top surface, forming the protective film, forming the hole in the film so as to expose the pad, and forming the electrode electrically connected to the pad via the hole.
Abstract:
A bidirectional Zener diode includes a substrate. A first conductivity type base region is formed in a surficial portion of the substrate. A second conductivity type first impurity region is formed in a surficial portion of the base region so as to form a pn junction with the base region. A second conductivity type second impurity region is formed in a surficial portion of the base region in a manner spaced apart from the first impurity region so as to form a pn junction with the base region. A first electrode is arranged at the surface of the substrate. A second electrode is arranged at the surface of the substrate. A dimension of the base region along the surface of the substrate between the first impurity region and the second impurity region is equal to or greater than 4.0 μm and equal to or smaller than 12.5 μm.
Abstract:
A discrete capacitor of the present invention includes a substrate having a front surface portion, an impurity diffusion layer formed on the front surface portion of the substrate, an oxide film formed on the substrate and having a first opening to selectively expose the impurity diffusion layer, a dielectric film formed on the impurity region having been exposed from the oxide film, and a first electrode opposed to the impurity diffusion layer with the dielectric film therebetween, wherein the impurity concentration on the front surface portion of the impurity diffusion layer is 5×1019 cm−3 or more.
Abstract:
A chip part according to the present invention includes a substrate having a penetrating hole, a pair of electrodes formed on a front surface of the substrate and including one electrode overlapping the penetrating hole in a plan view and another electrode facing the one electrode, and an element formed on the front surface side of the substrate and electrically connected to the pair of electrodes.