摘要:
The present invention provides a semiconductor package structure, including: a chip, wherein bonding pads and a passivation layer are arranged on the surface of the chip, the passivation layer is provided with first openings for exposing the bonding pads, and a seed layer connected with the bonding pads and columnar salient points stacked on the seed layer are arranged on the bonding pads; lead frames, wherein each lead frame is provided with a plurality of discrete pins, and internal pins and external pins are respectively arranged on two opposite surfaces of the pins; the chip being flipped on the lead frames, and the columnar salient points being connected with the internal pins; a plastic package layer, wherein the plastic package layer is used for sealing the chip, the columnar salient points and the lead frames and exposing the external pins. By adopting the present invention, a transverse area occupied by the package structure is decreased, the volume of the entire package structure is correspondingly decreased, and the integration level of the package structure is improved. The present invention further provides a forming method of the semiconductor package structure.
摘要:
Flip-chip on leadframe (FCOL) semiconductor packaging structure and fabrication method thereof are provided. A semiconductor chip with copper pillars formed there-over is provided. A barrier layer is formed on the copper pillars. A solder material is coated on the barrier layer. A layer of soldering flux is coated on the solder material. A leadframe with electric leads formed thereon is provided. An insulating layer is formed an the leadframe and having a plurality of openings to expose portion of the electric leads. The semiconductor chip is placed upside down onto the leadframe to have the soldering flux in contact with the portion of the electric leads exposed in the openings. The solder material flows back to form conductive interconnections between the copper pillars and the portion of the electric leads exposed in the openings. The semiconductor chip is packaged with the leadframe using a mold compound.
摘要:
A package structure, including: a circuit board, including a first surface and a second surface opposite to the first surface, where the circuit board possesses multiple carrying units arranged in a matrix form, each of which possesses multiple input pads on the first surface and multiple output pads on the second surface, where the input pads and the output pads are interconnected electrically; a pre-packaged panel, including a first encapsulation layer, which possesses multiple integrating units arranged in a matrix form, wherein each of the integrating units possesses at least one semiconductor chip with multiple first pads, where first metal bumps are disposed on the first pads; wherein the pre-packaged panel is mounted on the first surface; a filling layer, filling a space between the first surface and the pre-packaged panel; and second metal bumps, disposed on the output pads. Accordingly, the package structure improves package efficiency.
摘要:
A method for wafer-level packaging includes providing a semiconductor wafer having a plurality of semiconductor chips connected by connection stems in the wafer. The method further includes forming a plurality of through holes in the connections stems; forming a protective layer covering the wafer with a plurality of positions for planting soldering balls exposed. The protective layer includes an upper protective layer formed on a top side of the wafer, a lower protective layer formed on a back side of the wafer, and a plurality of middle protective layers formed in the through holes. The upper protective layer is connected to the lower protective layer through the plurality of the middle protective layers. The method also includes forming soldering balls on the positions for planting soldering balls and finally, forming a plurality of packaged individual semiconductor chip structures by cutting the wafer along the connection stems with the through holes.
摘要:
A semiconductor packaging method is provided. The method includes providing a semiconductor substrate. The semiconductor substrate has a first surface and a second surface, and an electroplating seed layer on the first surface of the semiconductor substrate. The method also includes forming a plurality of columnar electrodes over the electroplating seed layer, where the columnar electrodes include first columnar electrodes and second columnar electrodes. Further, the method includes forming a diffusion barrier layer over the first columnar electrodes and the second columnar electrodes, forming a plurality of first solder balls over the diffusion barrier layer on the first columnar electrodes. The method also includes providing a packaging substrate having solder terminals corresponding to the first solder balls, and mounting the semiconductor substrate onto the packaging substrate in a flipped position, such that the first solder balls are connected with the solder terminals.
摘要:
Flip-chip on leadframe (FCOL) semiconductor packaging structure and fabrication method thereof are provided. A semiconductor chip with copper pillars formed there-over is provided. A barrier layer is formed on the copper pillars. A solder material is coated on the barrier layer. A layer of soldering flux is coated on the solder material. A leadframe with electric leads formed thereon is provided. An insulating layer is formed an the leadframe and having a plurality of openings to expose portion of the electric leads. The semiconductor chip is placed upside down onto the leadframe to have the soldering flux in contact with the portion of the electric leads exposed in the openings. The solder material flows back to form conductive interconnections between the copper pillars and the portion of the electric leads exposed in the openings. The semiconductor chip is packaged with the leadframe using a mold compound.
摘要:
Testing probe and semiconductor testing fixture, and their fabrication methods are provided. A testing probe may configure a chamber through an insulating body. A first testing pin is disposed inside the chamber of the insulating body. The first testing pin includes: a first testing terminal on one end of the first testing pin and a first connection terminal on another end of the first testing pin. An elastic member is disposed inside the chamber and attached to the first testing pin to drive an upward or downward movement of the first testing pin along the chamber. A second testing pin is disposed around an outer sidewall surface of the insulating body enclosing the first testing pin. The second testing pin includes a second testing terminal on one end of the second testing pin and a second connection terminal on another end of the second testing pin.
摘要:
A chip packaging structure and packaging method. The packaging structure comprises: a semiconductor substrate; a metal pad provided inside the semiconductor substrate; an insulating layer provided on the semiconductor substrate, the insulating layer having an opening for exposing the metal pad; a sub-ball metal electrode provided on the metal pad; a solder ball provided on the surface of the sub-ball metal electrode, the solder ball having a first apron structure and the first apron structure covering partial metal pad on the periphery of the bottom of the under-ball metal electrode. The chip packaging structure of the present invention enhances the adhesion between the solder ball and the metal pad, and improves the reliability in chip packaging.
摘要:
A chip packaging structure and packaging method. The packaging structure comprises: a semiconductor substrate; a metal pad provided inside the semiconductor substrate; an insulating layer provided on the semiconductor substrate, the insulating layer having an opening for exposing the metal pad; a sub-ball metal electrode provided on the metal pad; a solder ball provided on the surface of the sub-ball metal electrode, the solder ball having a first apron structure and the first apron structure covering partial metal pad on the periphery of the bottom of the under-ball metal electrode. The chip packaging structure of the present invention enhances the adhesion between the solder ball and the metal pad, and improves the reliability in chip packaging.