Abstract:
A package structure includes a first dielectric layer, semiconductor device(s) attached to the first dielectric layer, and an embedding material applied to the first dielectric layer so as to embed the semiconductor device therein, the embedding material comprising one or more additional dielectric layers. Vias are formed through the first dielectric layer to the at least one semiconductor device, with metal interconnects formed in the vias to form electrical interconnections to the semiconductor device. Input/output (I/O) connections are located on one end of the package structure on one or more outward facing surfaces thereof to provide a second level connection to an external circuit. The package structure interfits with a connector on the external circuit to mount the package perpendicular to the external circuit, with the I/O connections being electrically connected to the connector to form the second level connection to the external circuit.
Abstract:
A power overlay (POL) structure includes a POL sub-module. The POL sub-module includes a dielectric layer and a semiconductor device having a top surface attached to the dielectric layer. The top surface of the semiconductor device has at least one contact pad formed thereon. The POL sub-module also includes a metal interconnect structure that extends through the dielectric layer and is electrically coupled to the at least one contact pad of the semiconductor device. A conducting shim is coupled to a bottom surface of the semiconductor device and a first side of a thermal interface is coupled to the conducting shim. A heat sink is coupled to a second side of the electrically insulating thermal interface.
Abstract:
A semiconductor device module includes a dielectric layer, a semiconductor device having a first surface coupled to the dielectric layer, and a conducting shim having a first surface coupled to the dielectric layer. The semiconductor device also includes an electrically conductive heatspreader having a first surface coupled to a second surface of the semiconductor device and a second surface of the conducting shim. A metallization layer is coupled to the first surface of the semiconductor device and the first surface of the conducting shim. The metallization layer extends through the dielectric layer and is electrically connected to the second surface of the semiconductor device by way of the conducting shim and the heatspreader.
Abstract:
Composite foams are provided including a metal template and a conformal atomic-scale film disposed over such metal template to form a 3-dimensional interconnected structure. The metal template includes a plurality of sintered interconnects, having a plurality of first non-spherical pores, a first non-spherical porosity, and a first surface-area-to-volume ratio. The conformal atomic-scale film has a plurality of second non-spherical pores, a second non-spherical porosity, and a second surface-area-to-volume ratio approximately equal to the first surface-area-to-volume ratio. The plurality of sintered interconnects has a plurality of dendritic particles and the conformal atomic-scale film includes at least one of a layer of graphene and a layer of hexagonal boron nitride.
Abstract:
An electronic device assembly includes a heat sink coupled to an electronic device to dissipate the heat produced by the electronic device. A heat spreader is coupled between the electronic device and the heat sink to transfer heat from the electronic device to the heat sink. Furthermore, at least one of the electronic device, the heat spreader, and the heat sink is disposed with a disordered carbon coating.
Abstract:
A package structure includes a dielectric layer, at least one semiconductor device attached to the dielectric layer, one or more dielectric sheets applied to the dielectric layer and about the semiconductor device(s) to embed the semiconductor device(s) therein, and a plurality of vias formed to the semiconductor device(s) that are formed in at least one of the dielectric layer and the one or more dielectric sheets. The package structure also includes metal interconnects formed in the vias and on one or more outward facing surfaces of the package structure to form electrical interconnections to the semiconductor device(s). The dielectric layer is composed of a material that does not flow during a lamination process and each of the one or more dielectric sheets is composed of a curable material configured to melt and flow when cured during the lamination process so as to fill-in any air gaps around the semiconductor device(s).
Abstract:
A circuit card assembly is provided. The circuit card assembly includes a printed circuit board, at least one electronic component mounted on the printed circuit board, and a frame coupled to the printed circuit board such that the electronic component is disposed between the printed circuit board and the frame. The circuit card assembly also includes a heat transfer device coupled to the frame. The heat transfer device has a heat pipe disposed at least in part between the frame and the printed circuit board. The circuit card assembly further includes a pivotable brace biasing the heat pipe toward the electronic component to facilitate cooling the electronic component.
Abstract:
A system and method for packaging light emitting semiconductors (LESs) is disclosed. An LES device is provided that includes a heatsink and an array of LES chips mounted on the heatsink and electrically connected thereto, with each LES chip comprising connection pads and a light emitting area configured to emit light therefrom responsive to a received electrical power. The LES device also includes a flexible interconnect structure positioned on and electrically connected to each LES chip to provide for controlLES operation of the array of LES chips, with the flexible interconnect structure further including a flexible dielectric film configured to conform to a shape of the heatsink and a metal interconnect structure formed on the flexible dielectric film and that extends through vias formed in the flexible dielectric film so as to be electrically connected to the connection pads of the LES chips.