Abstract:
The invention relates to systems and methods for marketing and using products such as liquid materials, especially liquid reagents for use in microbiological and cellular biological laboratory settings include the use of unique color and simple numeric or alphanumeric identifiers to quickly and easily identify any product from a catalog list of products. Methods of marketing, advertising and producing such products are also disclosed. Particular embodiments include products, product packaging and product labeling. The invention also relates to collars and sleeves for containers, as well as related methods of use.
Abstract:
Provided are compositions and methods useful in evaluation of cell health and metabolism, cell viability, proliferation, and the effects of compounds on these qualities. The assays provided are rapid, robust, nontoxic and suitable for use with high throughput devices.
Abstract:
A system including a power supply and a clock circuitry to generate a plurality of clock signals. Each clock signal is synchronous with a primary clock signal. First, second, and third clock signals of the plurality of clock signals are asynchronous to each other. The system further includes a plurality of switches. Each switch of the plurality of switches is communicatively coupled to the power supply and the clock circuitry. A first switch of the plurality of switches receives the first clock signal, a second switch of the plurality of switches receives the second clock signal, and a third switch of the plurality of switches receives the third clock signal.
Abstract:
A container system includes a bag having of one or more sheets of flexible polymeric material, the bag having an interior surface at least partially bounding a chamber, the chamber being adapted to hold a fluid. A flexible sparging sheet is secured to the interior surface of the bag so that a compartment is formed between the interior surface of the bag and the sparging sheet, at least a portion of the sparging sheet allowing gas to pass therethrough. A tubular port or tube is secured with the bag or the sparging sheet so that a passage bounded by the tubular port or tube communicates with the compartment.
Abstract:
The present application relates to systems and methods using biometric data of an individual for identifying the individual and/or verifying the identity of an individual. These systems and methods are useful for, amongst many applications, more secure identification of high-risk individuals attempting to gain access to an entity, transport, information, location, security organization, law enforcement organization, transaction, services, authorized status, and/or funds.
Abstract:
An instrument for processing and/or measuring a biological process contains a sample processing system, an excitation source, an excitation optical system, an optical sensor, and an emission optical system. The sample processing system is configured to retain a first sample holder and a second sample holder, wherein the number of sample cells is different for each sample holder or a characteristic dimension for the first sample cells is different from that of the second sample holder. The instrument also includes an excitation source temperature controller comprising a temperature sensor that is coupled to the excitation source. The temperature controller is configured to produce a first target temperature when the first sample holder is retained by the instrument and to produce a second target temperature when the second sample holder is retained by the instrument.
Abstract:
An apparatus comprising a chemical field effect transistor array in a circuit-supporting substrate is disclosed. The transistor array has disposed on its surface an array of sample-retaining regions capable of retaining a chemical or biological sample from a sample fluid. The transistor array has a pitch of 10 μm or less and a sample-retaining region is positioned on at least one chemical field effect transistor which is configured to generate at least one output signal related to a characteristic of a chemical or biological sample in such sample-retaining region.
Abstract:
A mixing system includes a housing having a motor mount rotatably coupled thereto, the motor mount having a passage extending therethrough. A drive shaft is removably positioned within the passage of the motor mount. A cap includes a main body removably coupled to the motor mount and an actuator coupled to the main body so as to be pivotable between a first position and a second position with respect to the main body. The actuator producing a camming action when the actuator is pivoted such that when the actuator is in the first position, the actuator pushes the drive shaft against the motor mount so that the main body is locked to the motor mount and so that rotation of the motor mount causes rotation of the drive shaft and when the actuator is in the second position, the actuator is disengaged from the drive shaft and the cap is removable from the motor mount.
Abstract:
A system and method employing at least one semiconductor device, or an arrangement of insulating and metal layers, having at least one detecting region which can include, for example, a recess or opening therein, for detecting a charge representative of a component of a polymer, such as a nucleic acid strand proximate to the detecting region, and a method for manufacturing such a semiconductor device. The system and method can thus be used for sequencing individual nucleotides or bases of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA). The semiconductor device includes at least two doped regions, such as two n-typed regions implanted in a p-typed semiconductor layer or two p-typed regions implanted in an n-typed semiconductor layer. The detecting region permits a current to pass between the two doped regions in response to the presence of the component of the polymer, such as a base of a DNA or RNA strand. The current has characteristics representative of the component of the polymer, such as characteristics representative of the detected base of the DNA or RNA strand.
Abstract:
Devices, systems, kits, and methods for detecting and/or identifying a plurality of spectrally labeled bodies well-suited for performing multiplexed assays. By spectrally labeling the beads with materials which generate identifiable spectra, a plurality of beads may be identified within the fluid. Reading of the beads is facilitated by restraining the beads in arrays, and/or using a focused laser.