摘要:
An integrated circuit substrate having laser-embedded conductive patterns provides a high-density mounting and interconnect structure for integrated circuits. Conductive patterns within channels on the substrate provide interconnects that are isolated by the channel sides. A dielectric material is injection-molded or laminated over a metal layer that is punched or etched. The metal layer can provide one or more power planes within the substrate. A laser is used to ablate channels on the surfaces of the outer dielectric layer for the conductive patterns. The conductive patterns are electroplated or paste screen-printed and an etchant-resistive material is applied. Finally, a plating material can be added to exposed surfaces of the conductive patterns. An integrated circuit die and external terminals can then be attached to the substrate, providing an integrated circuit having a high-density interconnect.
摘要:
A method of forming an electronic component package includes coupling a first surface of an electronic component to a first surface of a first dielectric strip, the electronic component comprising bond pads on the first surface; forming first via apertures through the first dielectric strip to expose the bond pads; and filling the first via apertures with an electrically conductive material to form first vias electrically coupled to the bond pads. The bond pads are directly connected to the corresponding first vias without the use of a solder and without the need to form a solder wetting layer on the bond pads.
摘要:
Methods and systems for a semiconductor device package with a die-to-packing substrate first bond are disclosed and may include bonding a first semiconductor die to a packaging substrate, applying an underfill material between the first semiconductor die and the packaging substrate, and bonding one or more additional die to the first semiconductor die. The additional die may comprise electronic devices. The first semiconductor die may comprise an interposer die or may comprise electronic devices. The first semiconductor die may be bonded to the packaging substrate utilizing a mass reflow process or a thermal compression process. The additional die may be bonded to the first die utilizing a mass reflow process or a thermal compression process. The bonded die may be encapsulated in a mold material, which may comprise a polymer. The one or more additional die may comprise micro-bumps for coupling to the first semiconductor die.
摘要:
An extended landing pad substrate package includes a dielectric layer having an upper surface and an opposite lower surface. A lower circuit pattern is embedded in the lower surface of the dielectric layer. The lower circuit pattern includes traces having a first thickness and extended landing pads having a second thickness greater than the first thickness. Blind via apertures are formed through an upper circuit pattern embedded into the upper surface of the dielectric layer, through the dielectric layer and to the extended landing pads. The length of the blind via apertures is minimized due to the increase second thickness of the extended landing pads as compared to the first thickness of traces. Accordingly, the width of the blind via apertures at the upper surface of the dielectric layer is minimized.
摘要:
Methods for a semiconductor device package with a die-to-die first bond are disclosed and may include bonding one or more semiconductor die comprising electronic devices to an interposer die. An underfill material may be applied between the semiconductor die and the interposer die, and a mold material may be applied to encapsulate the semiconductor die. The interposer die may be thinned to expose through-silicon-vias (TSVs). The bonding of the semiconductor die may comprise adhering the semiconductor die to an adhesive layer, and bonding the semiconductor die to the interposer die. The semiconductor die may comprise micro-bumps for coupling to the interposer die, wherein the bonding comprises: positioning the micro-bumps in respective wells in a layer disposed on the interposer die; and bonding the micro-bumps to the interposer die. The semiconductor die may be bonded to the interposer die utilizing a mass reflow process or a thermal compression process.
摘要:
Methods for temporary wafer molding for chip-on-wafer assembly may include bonding one or more semiconductor die to an interposer wafer, applying a temporary mold material to encapsulate the bonded die, and backside processing the interposer, which may be singulated to generate assemblies comprising the bonded die, the interposer die, which may be bonded to packaging substrates. The temporary mold material may be removed and the bonded die may be tested. Additional die may be bonded to the assemblies based on the electrical testing. The interposer may be singulated utilizing one or more of: a laser cutting process, reactive ion etching, a sawing technique, and a plasma etching process. The backside processing may comprise thinning the interposer wafer to expose through-silicon-vias (TSVs) and placing metal contacts on the exposed TSVs. The die may be bonded to the interposer utilizing a mass reflow or thermal compression process.
摘要:
Methods and systems for a semiconductor device package with a die to interposer wafer first bond are disclosed and may include bonding a plurality of semiconductor die comprising electronic devices to an interposer wafer, and applying an underfill material between the die and the interposer wafer. A mold material may be applied to encapsulate the die. The interposer wafer may be thinned to expose through-silicon-vias (TSVs) and metal contacts may be applied to the exposed TSVs. The interposer wafer may be singulated to generate assemblies comprising the semiconductor die and an interposer die. The die may be placed on the interposer wafer utilizing an adhesive film. The interposer wafer may be singulated utilizing one or more of: a laser cutting process, reactive ion etching, a sawing technique, and a plasma etching process. The die may be bonded to the interposer wafer utilizing a mass reflow or a thermal compression process.
摘要:
A method and structure provides a Direct Write Wafer Level Chip Scale Package (DWWLCSP) that utilizes permanent layers/coatings and direct write techniques to pattern these layers/coatings, thereby avoiding the use of photoimagable materials and photo-etching processes.
摘要:
A semiconductor package including top-surface terminals for mounting another semiconductor package provides a three-dimensional circuit configuration that can provide removable connection of existing grid-array packages having a standard design. A semiconductor die is mounted on an electrically connected to a circuit substrate having terminals disposed on a bottom side for connection to an external system. The die and substrate are encapsulated and vias are laser-ablated or otherwise formed through the encapsulation to terminals on the top surface of the substrate that provide a grid array mounting lands to which another grid array semiconductor package may be mounted. The bottom side of the vias may terminate and electrically connect to terminals on the substrate, terminals on the bottom of the semiconductor package (through terminals) or terminals on the top of the semiconductor die. The vias may be plated, paste-filled, filled with a low melting point alloy and may have a conical profile for improved plating performance.
摘要:
A semiconductor package including top-surface terminals for mounting another semiconductor package provides a three-dimensional circuit configuration that can provide removable connection of existing grid-array packages having a standard design. A semiconductor die is mounted on an electrically connected to a circuit substrate having terminals disposed on a bottom side for connection to an external system. The die and substrate are encapsulated and vias are laser-ablated or otherwise formed through the encapsulation to terminals on the top surface of the substrate that provide a grid array mounting lands to which another grid array semiconductor package may be mounted. The bottom side of the vias may terminate and electrically connect to terminals on the substrate, terminals on the bottom of the semiconductor package (through terminals) or terminals on the top of the semiconductor die. The vias may be plated, paste- filled, filled with a low melting point alloy and may have a conical profile for improved plating performance.