Abstract:
A semiconductor device has a modular interconnect unit or interconnect structure disposed in a peripheral region of the semiconductor die. An encapsulant is deposited over the semiconductor die and interconnect structure. A first insulating layer is formed over the semiconductor die and interconnect structure. A plurality of openings is formed in the first insulating layer over the interconnect structure. The openings have a pitch of 40 micrometers. The openings include a circular shape, ring shape, cross shape, or lattice shape. A conductive layer is deposited over the first insulating layer. The conductive layer includes a planar surface. A second insulating layer is formed over the conductive layer. A portion of the encapsulant is removed to expose the semiconductor die and the interconnect structure. The modular interconnect unit includes a vertical interconnect structure. The modular interconnect unit forms part of an interlocking pattern around the semiconductor die.
Abstract:
A plurality of semiconductor die is mounted to a temporary carrier. An encapsulant is deposited over the semiconductor die and carrier. A portion of the encapsulant is designated as a saw street between the die, and a portion of the encapsulant is designated as a substrate edge around a perimeter of the encapsulant. The carrier is removed. A first insulating layer is formed over the die, saw street, and substrate edge. A first conductive layer is formed over the first insulating layer. A second insulating layer is formed over the first conductive layer and first insulating layer. The encapsulant is singulated through the first insulating layer and saw street to separate the semiconductor die. A channel or net pattern can be formed in the first insulating layer on opposing sides of the saw street, or the first insulating layer covers the entire saw street and molding area around the semiconductor die.
Abstract:
A semiconductor device has a temporary carrier. A semiconductor die is oriented with an active surface toward, and mounted to, the temporary carrier. An encapsulant is deposited with a first surface over the temporary carrier and a second surface, opposite the first surface, is deposited over a backside of the semiconductor die. The temporary carrier is removed. A portion of the encapsulant in a periphery of the semiconductor die is removed to form an opening in the first surface of the encapsulant. An interconnect structure is formed over the active surface of the semiconductor die and extends into the opening in the encapsulant layer. A via is formed and extends from the second surface of the encapsulant to the opening. A first bump is formed in the via and electrically connects to the interconnect structure.
Abstract:
A plurality of semiconductor die is mounted to a temporary carrier. An encapsulant is deposited over the semiconductor die and carrier. A portion of the encapsulant is designated as a saw street between the die, and a portion of the encapsulant is designated as a substrate edge around a perimeter of the encapsulant. The carrier is removed. A first insulating layer is formed over the die, saw street, and substrate edge. A first conductive layer is formed over the first insulating layer. A second insulating layer is formed over the first conductive layer and first insulating layer. The encapsulant is singulated through the first insulating layer and saw street to separate the semiconductor die. A channel or net pattern can be formed in the first insulating layer on opposing sides of the saw street, or the first insulating layer covers the entire saw street and molding area around the semiconductor die.
Abstract:
A semiconductor device is made by forming a first conductive layer over a carrier. The first conductive layer has a first area electrically isolated from a second area of the first conductive layer. A conductive pillar is formed over the first area of the first conductive layer. A semiconductor die or component is mounted to the second area of the first conductive layer. A first encapsulant is deposited over the semiconductor die and around the conductive pillar. A first interconnect structure is formed over the first encapsulant. The first interconnect structure is electrically connected to the conductive pillar. The carrier is removed. A portion of the first conductive layer is removed. The remaining portion of the first conductive layer includes an interconnect line and UBM pad. A second interconnect structure is formed over a remaining portion of the first conductive layer is removed.
Abstract:
A semiconductor device has a first semiconductor die. A first inductor is formed over the first semiconductor die. A second inductor is formed over the first inductor and aligned with the first inductor. An insulating layer is formed over the first semiconductor die and the first and second inductors. A conductive bridge is formed over the insulating layer and electrically connected between the second inductor and the first semiconductor die. In one embodiment, the semiconductor device has a second semiconductor die and a conductive layer is formed between the first and second semiconductor die. In another embodiment, a capacitor is formed over the first semiconductor die. In another embodiment, the insulating layer has a first thickness over a footprint of the first semiconductor die and a second thickness less than the first thickness outside the footprint of the first semiconductor die.
Abstract:
A semiconductor device has an encapsulant deposited over a first surface of the semiconductor die and around the semiconductor die. A first insulating layer is formed over a second surface of the semiconductor die opposite the first surface. A conductive layer is formed over the first insulating layer. An interconnect structure is formed through the encapsulant outside a footprint of the semiconductor die and electrically connected to the conductive layer. The first insulating layer includes an optically transparent or translucent material. The semiconductor die includes a sensor configured to receive an external stimulus passing through the first insulating layer. A second insulating layer is formed over the first surface of the semiconductor die. A conductive via is formed through the first insulating layer outside a footprint of the semiconductor die. A plurality of stacked semiconductor devices is electrically connected through the interconnect structure.
Abstract:
A semiconductor device has a semiconductor die and conductive layer formed over a surface of the semiconductor die. A first channel can be formed in the semiconductor die. An encapsulant is deposited over the semiconductor die. A second channel can be formed in the encapsulant. A first insulating layer is formed over the semiconductor die and first conductive layer and into the first channel. The first insulating layer extends into the second channel. The first insulating layer has characteristics of tensile strength greater than 150 MPa, elongation between 35-150%, and thickness of 2-30 micrometers. A second insulating layer can be formed over the semiconductor die prior to forming the first insulating layer. An interconnect structure is formed over the semiconductor die and encapsulant. The interconnect structure is electrically connected to the first conductive layer. The first insulating layer provides stress relief during formation of the interconnect structure.
Abstract:
A semiconductor device includes a semiconductor die. An encapsulant is deposited over the semiconductor die. A conductive micro via array is formed outside a footprint of the semiconductor die and over the semiconductor die and encapsulant. A first through-mold-hole (TMH) is formed including a step-through-hole structure through the encapsulant to expose the conductive micro via array. An insulating layer is formed over the semiconductor die and the encapsulant. A micro via array is formed through the insulating layer and outside the footprint of the semiconductor die. A conductive layer is formed over the insulating layer. A conductive ring is formed comprising the conductive micro via array. A second TMH is formed partially through the encapsulant to a recessed surface of the encapsulant. A third TMH is formed through the encapsulant and extending from the recessed surface of the encapsulant to the conductive micro via array.
Abstract:
A semiconductor device has a substrate with a stiffening layer disposed over the substrate. The substrate has a circular shape or rectangular shape. A plurality of semiconductor die is disposed over a portion of the substrate while leaving an open area of the substrate devoid of the semiconductor die. The open area of the substrate devoid of the semiconductor die includes a central area or interstitial locations among the semiconductor die. The semiconductor die are disposed around a perimeter of the substrate. An encapsulant is deposited over the semiconductor die and substrate. The substrate is removed and an interconnect structure is formed over the semiconductor die. By leaving the predetermined areas of the substrate devoid of semiconductor die, the warping effect of any mismatch between the CTE of the semiconductor die and the CTE of the encapsulant on the reconstituted wafer after removal of the substrate is reduced.