Abstract:
An illuminating device includes: a light source which is disposed outside a vacuum chamber; a light guide which guides the light emitted from the light source, into the vacuum chamber; a light projecting portion which is fixed in the vacuum chamber, and which emits the light guided by the light guide; a light receiving portion which is attached to a support table of a holder driving device, and which receives the light emitted from the light projecting portion in a state where a holder is positioned in a notch detecting position; a light guide which guides the light received by the light receiving portion; and a light emitting device which is attached to the support table, and which irradiates an outer circumferential portion of a substrate with the light guided by the light guide.
Abstract:
A laser atom probe system and a method for analysing a specimen by laser atom probe tomography are disclosed. The system includes a specimen holder whereon a specimen to be analyzed may be mounted, the specimen having a tip shape. The system further includes a detector, an electrode arranged between the specimen holder and the detector, and a voltage source configured to apply a voltage difference between the specimen tip and the electrode. The system also includes at least one laser system configured to direct a laser beam laterally at the specimen tip and a tip shape monitoring means configured to detect and monitor the tip shape, and/or a means for altering and/or controlling one or more laser parameters of said laser beam(s) so as to maintain, restore or control said specimen tip shape.
Abstract:
A hydrogen ion implanter for the exfoliation of silicon from silicon wafers uses a large scan wheel carrying 50+ wafers around its periphery and rotating about an axis. In one embodiment, the axis of rotation of the wheel is fixed and a ribbon beam of hydrogen ions is directed down on a peripheral edge of the wheel. The ribbon beam extends over the full radial width of wafers on the wheel. The beam is generated by an ion source providing an extracted ribbon beam having at least 100 mm major cross-sectional diameter. The ribbon beam may be passed through a 90° bending magnet which bends the beam in the plane of the ribbon. The magnet provides intensity correction across the ribbon to compensate for the dependency on the radial distance from the wheel axis of the speed at which parts of the wafers pass through the ribbon beam.
Abstract:
An ion-cut machine and method for slicing silicon ingots into thin wafers for solar cell manufacturing is set forth, amongst other embodiments and applications. One embodiment comprises two carousels: first carousel (100) adapted for circulating workpieces (55) under ion beam (10) inside target vacuum chamber (30) while second carousel (80) is adapted for carrying implanted workpieces through a sequence of process stations that may include annealing (60), cleaving (70), slice output (42), ingot replacement (52), handle bonding, cleaning, etching and others. Workpieces are essentially swapped between carousels. In one embodiment, the swapping system comprises a high throughput load lock (200) disposed in the wall of the vacuum chamber (30), a vacuum swapper (110) swapping workpieces between first carousel (100) and load lock (200), and an atmospheric swapper (90) swapping workpieces between load lock (200) and second carousel (80).
Abstract:
An improved method and apparatus for extracting and handling samples for S/TEM analysis. Preferred embodiments of the present invention make use of a micromanipulator and a hollow microprobe probe using vacuum pressure to adhere the microprobe tip to the sample. By applying a small vacuum pressure to the lamella through the microprobe tip, the lamella can be held more securely and its placement controlled more accurately than by using electrostatic force alone. By using a probe having a beveled tip and which can also be rotated around its long axis, the extracted sample can be placed down flat on a sample holder. This allows sample placement and orientation to be precisely controlled, thus greatly increasing predictability of analysis and throughput
Abstract:
A system for further enhancing speed, i.e. improving throughput in a SEM-type inspection apparatus is provided. An inspection apparatus for inspecting a surface of a substrate produces a crossover from electrons emitted from an electron beam source 25•1, then forms an image under a desired magnification in the direction of a sample W to produce a crossover. When the crossover is passed, electrons as noises are removed from the crossover with an aperture, an adjustment is made so that the crossover becomes a parallel electron beam to irradiate the substrate in a desired sectional form. The electron beam is produced such that the unevenness of illuminance is 10% or less. Electrons emitted from the sample W are detected by a detector 25•11.
Abstract:
A nanorobot module with a measurement device for the measurement of spatial surface properties with a measurement range in the centimetre range and a resolution in the nanometre range, that can be arranged in a vacuum chamber, for example the vacuum chamber of a microscope. Along with this integration of the nanorobot module into a vacuum chamber, the disclosure further relates to the automation of the module in the chamber system, in particular the connection of the controller of the nanorobot system and the chamber system by the provision of an interface between both systems. Finally, the disclosure relates to a mechatronic exchange adapter for the flexible securing of nanorobot modules within a vacuum chamber, in particular the disclosure relates to an exchange adapter, which preferably in one process electrically connects a nanorobot module and mechanically secures it so that it is guided with high precision and without play.
Abstract:
An automatic taping lathe-microtome that produces a continuous ribbon of tissue by lathing an extremely thin strip off the surface of a cylindrical block containing a multitude of embedded tissue samples. Mechanisms are included for sandwiching this fragile ribbon of tissue between a pair of support tapes. Viewing holes are cut in the support tapes above and below each tissue slice such that the tapes act as slot grids allowing for direct viewing of each tissue slice in a transmission electron microscope (TEM). The resulting tissue-tape is placed on a spooling mechanism and fed into the beam of a TEM much like the film in a movie projector. This allows for random-access imaging of any section on the tape without requiring the TEM's vacuum be broken. This system is intended to give neuroscientists a tool to ultrastructure image large volumes of neural tissue and to trace multi-scale synaptic circuits.
Abstract:
A focused ion beam apparatus includes a sample base for mounting a sample, a three axis stage capable of moving the sample base in three directions: along two axes on a horizontal face and a vertical axis, and a first focused ion beam barrel and a second focused ion beam barrel for irradiating the sample with focused ion beams, the first focused ion beam barrel and the second focused ion beam barrel being arranged such that directions of the focused ion beams are substantially opposed to each other in a plane view thereof and are inclined in substantial line symmetry with regard to the vertical axis in a side view thereof.