摘要:
A probe card for testing a semiconductor wafer, a test method, and a test system employing the probe card are provided. The probe card includes: a substrate; patterns of pin contacts slidably mounted to the substrate; and a force applying member for biasing the pin contacts into electrical contact with die contacts on the wafer. In an illustrative embodiment the force applying member includes spring loaded electrical connectors in physical and electrical contact with the pin contacts. Alternately, the force applying member includes a compressible pad for multiple pin contacts, or separate compressible pads for each pin contact. A penetration depth of the pin contacts into the die contacts is controlled by selecting a spring force of the force applying member, and an amount of Z-direction overdrive of the pin contacts into the die contacts.
摘要:
A method and apparatus for testing unpackaged semiconductor dice includes a mother board and a plurality of interconnects mounted on the mother board and adapted to establish a temporary electrical connection with the dice. The interconnects can be formed with a silicon substrate and raised contact members for contacting the bond pads of a die. Alternately the interconnects can be formed with micro bump contact members mounted on an insulating film. The mother board allows each die to be tested separately for speed and functionality and to also be burn-in tested in parallel using standard burn-in ovens. In an alternate embodiment testing is performed using a mother board/daughter board arrangement. Each daughter board includes interconnects that allow the dice to be tested individually for speed and functionality. Multiple daughter boards can then be mounted to the mother board for burn-in testing using standard burn-in ovens.
摘要:
Microelectronic devices, methods for packaging microelectronic devices, and methods for forming interconnects in microelectronic devices are disclosed herein. In one embodiment, a method comprises providing a microelectronic substrate having a front side and a backside. The substrate has a microelectronic die including an integrated circuit and a terminal operatively coupled to the integrated circuit. The method also includes forming a passage at least partially through the substrate and having an opening at the front side and/or backside of the substrate. The method further includes sealing the opening with a conductive cap that closes one end of the passage while another end of the passage remains open. The method then includes filling the passage with a conductive material.
摘要:
In a socket to test semiconductor die, a recessed socket contact that avoids pinching the die contacts is diclosed. The socket contacts allow for smaller socket holes and, allow denser contact spacing. A variety of embodiments are presented that are suitable for use depending on the spacing between the conducters. For more closely spaced conductors, the body of the socket contact comprises a head, a spring coupled to the head, and a shaft coupled to the spring. No outer shell is needed for the spring, as the nonconductive sides of the socket hole serve that function. For conductors spaced further apart, the body of the socket contact comprises a metal shaft having an aperture. Compression causes the shaft to close around the slit, thereby decreasing the amount of lateral buckling. For even more densly spaced contacts, semiconductor fabrication techniques are used to construct a dense array of contacts.
摘要:
A chip scale package comprised of a semiconductor die having a silicon blank laminated to its active surface is disclosed. The bond pads of the die are accessed through apertures micromachined through the blank. The package may be employed with wire bonds, or solder or other conductive bumps may be placed in the blank apertures for flip-chip applications. Further, the package may be employed to reroute external connections of the die to other locations, such as a centralized ball grid array, or in an edge-connect arrangement for direct or discrete die connect (DDC) to a carrier. It is preferred that the chip scale package be formed at the wafer level, as one of a multitude of packages so formed with a wafer-level blank, and that the entire wafer be burned-in and tested to identify the known good die (KGD) before the wafer laminate is separated into individual packages.
摘要:
A test system for testing semiconductor components includes an interconnect having contacts for making temporary electrical connections with terminal contacts on the components. The interconnect contacts can be configured to electrically engage planar terminal contacts (e.g., bond pads, test pads) or bumped terminal contacts (e.g., solder bumps, solder balls) on the components. The test system also includes an alignment member for aligning the components to the interconnect. Different embodiments of the alignment member include: a curable polymer material molded in place on the interconnect; an alignment opening formed as an etched pocket in a substrate of the interconnect; and a separate fence attached to the interconnect using an alignment fixture.
摘要:
A probe card for testing a semiconductor wafer, a test method, and a test system employing the probe card are provided. The probe card includes: a substrate; patterns of pin contacts slidably mounted to the substrate; and a force applying member for biasing the pin contacts into electrical contact with die contacts on the wafer. In an illustrative embodiment the force applying member includes spring loaded electrical connectors in physical and electrical contact with the pin contacts. Alternately, the force applying member includes a compressible pad for multiple pin contacts, or separate compressible pads for each pin contact. A penetration depth of the pin contacts into the die contacts is controlled by selecting a spring force of the force applying member, and an amount of Z-direction overdrive of the pin contacts into the die contacts.
摘要:
A test system for testing semiconductor components, such as bumped dice and chip scale packages, is provided. The test system includes a base for retaining one or more components, and an interconnect for making temporary electrical connections with the components. The test system also includes an alignment fixture having an alignment surface for aligning the components to the interconnect. In addition, the components can include alignment members, such as beveled edges, bumps, or posts configured to interact with the alignment surface. The alignment fixture can be formed as a polymer layer, such as a layer of resist, which is deposited, developed and then cured using a wafer level fabrication process. The alignment surface can be an opening in the polymer layer configured to engage edges of the components, or alternately to engage the alignment members.
摘要:
A probe card for testing semiconductor wafers, and a method and system for testing wafers using the probe card are provided. The probe card is configured for use with a conventional testing apparatus, such as a wafer probe handler, in electrical communication with test circuitry. The probe card includes an interconnect substrate having contact members for establishing electrical communication with contact locations on the wafer. The probe card also includes a membrane for physically and electrically connecting the interconnect substrate to the testing apparatus, and a compressible member for cushioning the pressure exerted on the interconnect substrate by the testing apparatus. The interconnect substrate can be formed of silicon with raised contact members having penetrating projections. Alternately the contact members can be formed as indentations for testing bumped wafers. The membrane can be similar to multi layered TAB tape including metal foil conductors attached to a flexible, electrically-insulating, elastomeric tape. The probe card can be configured to contact all of the dice on the wafer at the same time, so that test signals can be electronically applied to selected dice as required.
摘要:
A test system for testing semiconductor components, such as bumped dice and chip scale packages, is provided. The test system includes a base for retaining one or more components, and an interconnect for making temporary electrical connections with the components. The test system also includes an alignment fixture having an alignment surface for aligning the components to the interconnect. In addition, the components can include alignment members, such as beveled edges, bumps, or posts configured to interact with the alignment surface. The alignment fixture can be formed as a polymer layer, such as a layer of resist, which is deposited, developed and then cured using a wafer level fabrication process. The alignment surface can be an opening in the polymer layer configured to engage edges of the components, or alternately to engage the alignment members.