Abstract:
A package structure includes a first dielectric layer, semiconductor device(s) attached to the first dielectric layer, and an embedding material applied to the first dielectric layer so as to embed the semiconductor device therein, the embedding material comprising one or more additional dielectric layers. Vias are formed through the first dielectric layer to the at least one semiconductor device, with metal interconnects formed in the vias to form electrical interconnections to the semiconductor device. Input/output (I/O) connections are located on one end of the package structure on one or more outward facing surfaces thereof to provide a second level connection to an external circuit. The package structure interfits with a connector on the external circuit to mount the package perpendicular to the external circuit, with the I/O connections being electrically connected to the connector to form the second level connection to the external circuit.
Abstract:
An electronics package is disclosed herein that includes a glass substrate having an exterior portion surrounding an interior portion thereof, wherein the interior portion has a first thickness and the exterior portion has a second thickness larger than the first thickness. An adhesive layer is formed on a lower surface of the interior portion of the glass substrate. A semiconductor device having an upper surface is coupled to the adhesive layer, the semiconductor device having at least one contact pad disposed on the upper surface thereof. A first metallization layer is coupled to an upper surface of the glass substrate and extends through a first via formed through the first thickness of the glass substrate to couple with the at least one contact pad of the semiconductor device.
Abstract:
An electronics package is disclosed herein that includes a glass substrate having an exterior portion surrounding an interior portion thereof, wherein the interior portion has a first thickness and the exterior portion has a second thickness larger than the first thickness. An adhesive layer is formed on a lower surface of the interior portion of the glass substrate. A semiconductor device having an upper surface is coupled to the adhesive layer, the semiconductor device having at least one contact pad disposed on the upper surface thereof. A first metallization layer is coupled to an upper surface of the glass substrate and extends through a first via formed through the first thickness of the glass substrate to couple with the at least one contact pad of the semiconductor device.
Abstract:
A package structure includes a first dielectric layer, semiconductor device(s) attached to the first dielectric layer, and an embedding material applied to the first dielectric layer so as to embed the semiconductor device therein, the embedding material comprising one or more additional dielectric layers. Vias are formed through the first dielectric layer to the at least one semiconductor device, with metal interconnects formed in the vias to form electrical interconnections to the semiconductor device. Input/output (I/O) connections are located on one end of the package structure on one or more outward facing surfaces thereof to provide a second level connection to an external circuit. The package structure interfits with a connector on the external circuit to mount the package perpendicular to the external circuit, with the I/O connections being electrically connected to the connector to form the second level connection to the external circuit.
Abstract:
A power overlay (POL) structure includes a POL sub-module. The POL sub-module includes a dielectric layer and a semiconductor device having a top surface attached to the dielectric layer. The top surface of the semiconductor device has at least one contact pad formed thereon. The POL sub-module also includes a metal interconnect structure that extends through the dielectric layer and is electrically coupled to the at least one contact pad of the semiconductor device. A conducting shim is coupled to a bottom surface of the semiconductor device and a first side of a thermal interface is coupled to the conducting shim. A heat sink is coupled to a second side of the electrically insulating thermal interface.
Abstract:
A power overlay (POL) structure includes a power device having at least one upper contact pad disposed on an upper surface of the power device, and a POL interconnect layer having a dielectric layer coupled to the upper surface of the power device and a metallization layer having metal interconnects extending through vias formed through the dielectric layer and electrically coupled to the at least one upper contact pad of the power device. The POL structure also includes at least one copper wirebond directly coupled to the metallization layer.
Abstract:
A semiconductor device module includes a dielectric layer, a semiconductor device having a first surface coupled to the dielectric layer, and a conducting shim having a first surface coupled to the dielectric layer. The semiconductor device also includes an electrically conductive heatspreader having a first surface coupled to a second surface of the semiconductor device and a second surface of the conducting shim. A metallization layer is coupled to the first surface of the semiconductor device and the first surface of the conducting shim. The metallization layer extends through the dielectric layer and is electrically connected to the second surface of the semiconductor device by way of the conducting shim and the heatspreader.
Abstract:
An electronic package is provided. The electronic package includes a substrate and a plurality of vias defined by a corresponding plurality of pre-defined via patterns. The electronic package further a metal built-up layer disposed on portions of the substrate to provide a plurality of pre-defined via locations and the plurality of pre-defined via patterns of the plurality of vias. Also, the electronic package includes a first conductive layer disposed on at least a portion of the metal built-up layer. Moreover, the electronic package includes a second conductive layer disposed on the first conductive layer, where the plurality of vias is disposed at least in part in the metal built-up layer, the first conductive layer, and the second conductive layer.
Abstract:
A package structure includes a dielectric layer, at least one semiconductor device attached to the dielectric layer, one or more dielectric sheets applied to the dielectric layer and about the semiconductor device(s) to embed the semiconductor device(s) therein, and a plurality of vias formed to the semiconductor device(s) that are formed in at least one of the dielectric layer and the one or more dielectric sheets. The package structure also includes metal interconnects formed in the vias and on one or more outward facing surfaces of the package structure to form electrical interconnections to the semiconductor device(s). The dielectric layer is composed of a material that does not flow during a lamination process and each of the one or more dielectric sheets is composed of a curable material configured to melt and flow when cured during the lamination process so as to fill-in any air gaps around the semiconductor device(s).
Abstract:
A power overlay (POL) packaging structure that incorporates a leadframe connection is disclosed. The a POL structure includes a POL sub-module having a dielectric layer, at least one semiconductor device attached to the dielectric layer and that includes a substrate composed of a semiconductor material and a plurality of connection pads formed on the substrate, and a metal interconnect structure electrically coupled to the plurality of connection pads of the at least one semiconductor device, with the metal interconnect structure extending through vias formed through the dielectric layer so as to be connected to the plurality of connection pads. The POL structure also includes a leadframe electrically coupled to the POL sub-module, with the leadframe comprising leads configured to make an interconnection to an external circuit structure.