摘要:
A semiconductor device includes a substrate having a first region and a second region separated from the first region by distance to define a space therebetween. A first semiconductor device including a gate dielectric is on the first region. The first semiconductor device can implement a FinFet-based input/output (I/O) device in the first region. A second semiconductor device excluding a gate dielectric is on the second region. The second semiconductor device can implement a nanosheet-based logic device in the second region.
摘要:
A microelectronic structure including a plurality of lower transistors and a plurality of upper transistors, where channels of the upper transistors are staggered from channels of the lower transistors. A lower dielectric pillar located beneath an upper transistor, where the dielectric pillar separates bottom transistors.
摘要:
A semiconductor device including a first pair of stacked transistors having a first upper transistor and a first lower transistor, a second pair of stacked transistors comprising a second upper transistor and a second lower transistor, and a first cross-connection between the first upper transistor and the second lower transistor.
摘要:
An asymmetric high-k dielectric for reduced gate induced drain leakage in high-k MOSFETs and methods of manufacture are disclosed. The method includes performing an implant process on a high-k dielectric sidewall of a gate structure. The method further includes performing an oxygen annealing process to grow an oxide region on a drain side of the gate structure, while inhibiting oxide growth on a source side of the gate structure adjacent to a source region.
摘要:
A metal-oxide-semiconductor field-effect transistor (MOSFET) with integrated passive structures and methods of manufacturing the same is disclosed. The method includes forming a stacked structure in an active region and at least one shallow trench isolation (STI) structure adjacent to the stacked structure. The method further includes forming a semiconductor layer directly in contact with the at least one STI structure and the stacked structure. The method further includes patterning the semiconductor layer and the stacked structure to form an active device in the active region and a passive structure of the semiconductor layer directly on the at least one STI structure.
摘要:
Embodiments include methods, computer systems and computer program products for controlling resistance value of a resistor in a circuit. Aspects include: retrieving, via a controller, a set of parameters of the resistor from a non-volatile memory in the circuit, detecting, via the controller, an operating temperature of the resistor during circuit operation in field using a temperature sensor, generating, by the controller, a temperature difference between the operating temperature detected and a target temperature at which the resistor has a target resistance value, producing, by the controller, a control signal responsive to the temperature difference generated, and transmitting the control signal to a temperature regulator placed adjacent to the resistor to adjust the resistance value of the resistor. The resistance value of the resistor varies in response to temperature changes around the resistor according to a temperature coefficient of the resistance of the resistor.
摘要:
A metal-oxide-semiconductor field-effect transistor (MOSFET) with integrated passive structures and methods of manufacturing the same is disclosed. The method includes forming a stacked structure in an active region and at least one shallow trench isolation (STI) structure adjacent to the stacked structure. The method further includes forming a semiconductor layer directly in contact with the at least one STI structure and the stacked structure. The method further includes patterning the semiconductor layer and the stacked structure to form an active device in the active region and a passive structure of the semiconductor layer directly on the at least one STI structure.
摘要:
After forming source/drain trenches within a top semiconductor layer of a semiconductor-on-insulator (SOI) substrate, portions of the trenches adjacent channel regions of a semiconductor structure are covered either by sacrificial spacers formed on sidewalls of the trenches or by photoresist layer portions. The sacrificial spacers or photoresist layer portions shield portions of the top semiconductor layer underneath the trenches from subsequent ion implantation for forming junction butting. The ion implantation regions thus are confined only in un-shielded, sublayered portions of the top semiconductor layer that are away from the channel regions of the semiconductor structure. The width of the ion implantation regions are controlled such that the implanted dopants do not diffuse into the channel regions during subsequent thermal cycles so as to suppress the short channel effects.
摘要:
A method of fabricating a semiconductor structure provided with a plurality of gated-diodes having a silicided anode (p-doped region) and cathode (n-doped region) and a high-K gate stack made of non-silicided gate material, the gated-diodes being adjacent to FETs, each of which having a silicided source, a silicided drain and a silicided HiK gate stack. The semiconductor structure eliminates a cap removal RIE in a gate first High-K metal gate flow from the region of the gated-diode. The lack of silicide and the presence of a nitride barrier on the gate of the diode are preferably made during the gate first process flow. The absence of the cap removal RIE is beneficial in that diffusions of the diode are not subjected to the cap removal RIE, which avoids damage and allows retaining its highly ideal junction characteristics.
摘要:
A structure and method provided for integrating SOI CMOS FETs and NVRAM memory devices. The structure includes a SOI substrate containing a semiconductor substrate, a SOI layer, and a BOX layer formed between the semiconductor substrate and the SOI layer. The SOI substrate includes predefined SOI device and NVRAM device regions. A SOI FET is formed in the SOI device region. The SOI FET includes portions of the BOX layer and SOI layers, an SOI FET gate dielectric layer, and a gate conductor layer. The structure further includes a NVRAM device formed in the NVRAM device region. The NVRAM device includes a tunnel oxide, floating gate, blocking oxide, and control gate layers. The tunnel oxide layer is coplanar with the portion of the BOX layer in the SOI device region. The floating gate layer is coplanar with the portion of the semiconductor layer in the SOI device region.