摘要:
The invention relates to the manufacture of a semiconductor device (10) which is suitable for surface mounting of a semiconductor body (1) provided with connection regions (2) for, for example, a diode.In a method, a flexible foil (6) comprises a conductor pattern (4) and an insulating layer (3), and is detachably secured, on the side of the conductor pattern (4), to a substrate (7).
摘要:
The assembly (100) comprises a laterally limited semiconductor substrate region (15) in which an electrical element (20) is defined. Thereon, an interconnect structure (21) is present. This is provided, at its first side (101) with contact pads (25,26) for coupling to an electric device (30), and at its second side (102) with connections (20) to the electrical element (11). Terminals (52,53) are present at the second side (102) of the interconnect structure (21), and coupled to the interconnect structure (21) through extensions (22,23) that are laterally displaced and isolated from the semiconductor substrate region (15). An electric device (30) is assembled to the first side (101) of the interconnect structure (21), and an encapsulation (40) extending on the first side (101) of the interconnect structure (21) so as to support it and encapsulating the electric device (30) is present.
摘要:
For the production of a SLM device, one mounts a spatial light modulator (SLM) (2) on a substrate (3) of the same material as the main material of the SLM (2) to be juxtaposed with the substrate (3). Particularly, silicon based SLMs (2) are mounted on a silicon substrate (3). This leads to arrays of SLMs (2) that maintain a high accuracy with respect to position of the SLMs (2) and planarity. To further improve the planarity, it is preferred to mount the SLMs (2) on the substrate (3) by soldering, using the self-aligning effect of solder connections (20).
摘要:
The present invention relates to a LED module (10) comprising a substrate (12), at least one LED chip (20) mounted on a first side of said substrate, and an optical element (21) covering the LED chip(s) (20). The substrate (12) is further provided with at least one via channel (22) extending from the first side of the substrate to a second opposite side of the substrate, whereby the via channel(s) is provided with conducting means for electrically connecting the at least one LED chip (20) to a control circuit (32). By providing the substrate with via channels with conducting means, the control circuit may be connected at the second side (the bottom side) or at the edge of the substrate. Thus, no top mounted electrical interface is required from the substrate, which is advantageous with respect to miniaturization, light emission, etcetera.
摘要:
Consistent with an example embodiment, there is an apparatus comprising a carrier, a laminated battery provided on a major surface of the carrier, and an integrated circuit. The laminated battery includes a bottom electrode layer, an electrolyte layer, and a top electrode layer. The integrated circuit is connected to the bottom electrode layer and the top electrode layer. The integrated circuit is surrounded by the laminated battery on the major surface of the carrier.
摘要:
A light emitting device, comprising a flexible substrate (2) with a single, structured conductive layer (5), and a plurality of LEDs (3) arranged on said substrate (2), said structured conductive layer (5) forming electrodes for driving said LEDs (3). The structured conductive layer comprises a plurality of heat dissipating pads (8), each having an area significantly larger than the area of each LED (3), and each LED (3a) is thermally connected to at least one of said pads (8a), and electrically connected in series between two pads (8a, 8b). Through this design, each LED is thermally connected to a relatively large heat dissipating area, and the thermal energy built up in the LED will be distributed over this area, and then dissipated upwards and downwards from this area. As the addressing can be handled by a single conducting layer, the flexibility of the substrate is improved compared to multilayer substrates. By connecting each LED in series between two pads, a very large portion of the conducting layer can be used for the pads, and very little area needs to be occupied by conducting tracks, which otherwise may be a problem with single layer designs.
摘要:
A light-emitting module (3a-c; 23; 26; 33a-c) comprising a plurality of light-sources (12a-e; 27a-h) arranged in at least a first and a second column (18a-b; 28a-c) arranged side by side and extending along a first direction of extension (X1) of the light-emitting module (3a-c; 23; 26; 33a-c); and a plurality of connector terminal pairs (13a-b, 14a-b, 15a-b, 16a-b 17a-b), each being electrically connected to a corresponding one of the light-sources (3a-c; 23; 26; 33a-c) for enabling supply of electrical power thereto. Each connector terminal pair (13a-b, 14a-b, 15a-b, 16a-b 17a-b) comprises a first connector terminal (13a, 14a, 15a, 16a 17a) and a second connector terminal (13b, 14b, 15b, 16b 17b) being arranged at opposite sides of the light-emitting module (3a-c; 23; 26; 33a-c). The light-sources (12a-e; 27a-h) are arranged in a predetermined light-source sequence along the first direction of extension (X1) of the light-emitting module (3a-c; 23; 26; 33a-c), and the connector terminal pairs (13a-b, 14a-b, 15a-b, 16a-b 17a-b) being electrically connected to the corresponding light-sources (12a-e; 27a-h) are arranged in the predetermined light-source sequence along the first direction of extension (X1) of the light-emitting module.
摘要:
The present invention relates to a printed circuit board arrangement with a multi-layer substrate (1, 2) having a buried conductor (4) and a contact area (3), connected to the conductor (4) and being disposed on a surface of the substrate. In order to improve the cooling of the buried conductor, a metal cooling area (6) is provided above the conductor (4), and is connected to the conductor by means of one or more via conductors (7).
摘要:
An LED module is described with a base 10 made out of a heat conducting material. An LED element (32) is arranged in a cavity (11) of the base. A collimator reflector (70) is formed by reflective surfaces (24, 64, 66a). Three of these reflective surfaces (66a, 66b, 64) are provided on a plastic insert (60) received in the cavity (11). A further reflective surface (24) is provided on the base (10) itself. This surface (24) has a straight border line (50). The collimator reflector (70) is arranged to reflect light from the LED (32) so that a cut-off (72) is formed by the straight border line (50). By thus integrating the cut-off, as the most critical optical element, into the base (10) itself, high accuracy is achieved.
摘要:
A light emitting device, comprising a flexible substrate (2) with a single, structured conductive layer (5), and a plurality of LEDs (3) arranged on said substrate (2), said structured conductive layer (5) forming electrodes for driving said LEDs (3). The structured conductive layer comprises a plurality of heat dissipating pads (8), each having an area significantly larger than the area of each LED (3), and each LED (3a) is thermally connected to at least one of said pads (8a), and electrically connected in series between two pads (8a, 8b). Through this design, each LED is thermally connected to a relatively large heat dissipating area, and the thermal energy built up in the LED will be distributed over this area, and then dissipated upwards and downwards from this area. As the addressing can be handled by a single conducting layer, the flexibility of the substrate is improved compared to multilayer substrates. By connecting each LED in series between two pads, a very large portion of the conducting layer can be used for the pads, and very little area needs to be occupied by conducting tracks, which otherwise may be a problem with single layer designs.