摘要:
A column is coupled to a last metallization of a die and the column is mated to a mounting substrate with that aid of a solder. The column may have the solder attached thereto before mating to the mounting substrate and the mounting substrate may be a bare-board (no solder mask) during the mating process. The column has an aspect ratio between 0.75 and 10.
摘要:
Methods for fabricating a layer or layers for use in package substrates and die spacers are described. In one implementation the layer or layers are fabricated to include a plurality of ceramic wells lying within a plane and separated by metallic via with recesses within the ceramic wells being occupied by a dielectric filler material.
摘要:
In one embodiment, the invention provides a method comprising fabricating a die bump on a die, the die bump being shaped and dimensioned to at least reduce the flow of solder material used, to attach the die bump to a package substrate, towards an under bump metallurgy (UBM) layer located below the die bump. Advantageously, the method may comprise performing a substrate reflow operation to attach the package substrate to the die bump, without performing a separate wafer reflow operation to reflow the die bump.
摘要:
The present invention discloses an apparatus having a platen; a polishing pad disposed over the platen; a slurry dispenser disposed over the polishing pad; a cathode connected electrically to the polishing pad; a wafer carrier disposed over the polishing pad; an anode connected electrically to the wafer carrier; and a power supply connected to the anode and the cathode. The present invention further discloses a method to remove a surface layer from a wafer using a polishing pad, a slurry, and an electrical current.
摘要:
A microelectronic package includes a package substrate (110, 310, 410), a plurality of dies (120, 610, 630) arranged in a stack (150, 350, 450) above the package substrate, with a first die (121) located above the package substrate at a bottom (151) of the stack and an uppermost die (122) located at a top (152) of the stack, and a plurality of heat spreaders (130, 330, 430, 620) stacked above the first die, with a first heat spreader (131) located above the uppermost die. One of the plurality of heat spreaders is located between each pair of adjacent dies. Each one of the plurality of heat spreaders has an extending portion (132) that extends laterally beyond an edge (123) of an adjacent die, and at least one of the plurality of heat spreaders both provides electrical interconnectivity and thermal conductivity.
摘要:
Methods of chemical vapor deposition include providing a deposition chamber defined at least in part by at least one of a chamber sidewall and a chamber base wall. At least one process chemical inlet to the deposition chamber is included. A substrate is positioned within the chamber and a process gas is provided over the substrate effective to deposit material onto the substrate. While providing the process gas, a purge gas is emitted into the chamber from a plurality of purge gas inlets comprised by at least one chamber wall surface. The purge gas inlets are separate from the at least one process chemical inlet and the emitting forms an inert gas curtain over the chamber wall surface.
摘要:
Systems and methods are provided for detecting flow in a mass flow controller (MFC). The position of a gate in the MFC is sensed or otherwise determined to monitor flow through the MFC and to immediately or nearly immediately detect a flow failure. In one embodiment of the present invention, a novel MFC is provided. The MFC includes an orifice, a mass flow control gate, an actuator and a gate position sensor. The actuator moves the control gate to control flow through the orifice. The gate position sensor determines the gate position and/or gate movement to monitor flow and immediately or nearly immediately detect a flow failure. According to one embodiment of the present invention, the gate position sensor includes a transmitter for transmitting a signal and a receiver for receiving the signal such that the receiver provides an indication of the position of the gate based on the signal received. Other embodiments of the gate position sensor are described herein, as well as systems and methods that incorporate the novel MFC within a semiconductor manufacturing process.
摘要:
A method of forming a silicon dioxide layer includes forming a high density plasma proximate a substrate, the plasma comprising silicon dioxide precursors; forming silicon dioxide from the precursors, the silicon dioxide being deposited over the substrate at a deposition rate; and while depositing, etching the deposited silicon dioxide with the plasma at an etch rate; a ratio of the deposition rate to the etch rate being at least about 4:1. Another method includes forming a high density plasma proximate a substrate; flowing gases into the plasma, at least some of the gases forming silicon dioxide; depositing the silicon dioxide formed from the gases over the substrate; and while depositing the silicon dioxide, maintaining a temperature of the substrate at greater than or equal to about 500° C. As an alternative, the method may include not cooling the substrate with a coolant gas while depositing the silicon dioxide.
摘要:
In one aspect, the invention includes a method of forming a silicon dioxide layer, comprising: a) forming a high density plasma proximate a substrate, the plasma comprising silicon dioxide precursors; b) forming silicon dioxide from the precursors, the silicon dioxide being deposited over the substrate at a deposition rate; and c) while depositing, etching the deposited silicon dioxide with the plasma at an etch rate; a ratio of the deposition rate to the etch rate being at least about 4:1. In another aspect, the invention includes a method of forming a silicon dioxide layer, comprising: a) forming a high density plasma proximate a substrate; b) flowing gases into the plasma, at least some of the gases forming silicon dioxide; c) depositing the silicon dioxide formed from the gases over the substrate; and d) while depositing the silicon dioxide, maintaining a temperature of the substrate at greater than or equal to about 500° C. In yet another aspect, the invention includes a method of forming a silicon dioxide layer, comprising: a) forming a high density plasma proximate a substrate; b) flowing gases into the plasma, at least some of the gases forming silicon dioxide; c) depositing the silicon dioxide formed from the gases over the substrate; and d) not cooling the substrate with a coolant gas while depositing the silicon dioxide.
摘要:
An apparatus and method of dicing a microelectronic device wafer by laser ablating at least an interconnect layer portion of the microelectronic device wafer in the presence of an anion plasma, wherein the anion plasma reacts with debris from the laser ablation to form a reaction gas.