摘要:
A peelable sealing structure includes a sealing layer and one or more optional additional layers. The peelable sealing structure includes a sealing surface that is formable into a peelable seal upon contact with a sealing substrate at all temperatures in a peelable seal temperature range. Moreover, the peelable sealing structure comprises a thermoplastic polymer and an additive dispersed within at least a portion of the thermoplastic polymer with the peelable sealing structure defining the sealing surface.
摘要:
The present disclosure is directed to processes for producing ultrasonic sealable film structures and flexible containers with ultrasonic seals. The film structure includes a first multilayer film and a second multilayer film Each multilayer film includes a backing layer and a seal layer. Each seal layer includes an ultrasonic sealable olefin-based polymer (USOP) having the following properties: (a) a heat of melting, ΔHm, less than 130 J/g, (b) a peak melting temperature, Tm, less than 125° C., (c) a storage modulus in shear (G′) from 50 MPa to 500 MPa, and (d) a loss modulus in shear (G″) greater than 10 MPa. The multilayer films are arranged such that the seal layer of the first multilayer film is in contact with the seal layer of the second multilayer film The seal layers form an ultrasonic seal having a seal strength from 30 N/15 mm to 80 N/15 mm when ultrasonically sealed at 4 N/mm seal force.
摘要:
A method of increasing bubble stability of a needful high molecular weight bimodal high-density polyethylene resin in need thereof, the method comprising subjecting the needful high molecular weight bimodal high-density polyethylene resin to a determined amount of oxygen tailoring of the resin so as to independently increase both the resin's melt storage modulus G′ (at G″=3000 pascals) and complex viscosity ratio SH1000, and thereby make an oxygen-tailored high molecular weight bimodal high-density polyethylene resin having a targeted increase in bubble stability. The method uses a tailoring effective amount of molecular oxygen (O2) to achieve the desired oxygen tailoring. The method uses these advanced rheological properties from dynamic mechanical spectroscopy, but analyzes the data in a different way that is more sensitive to changes in resin composition and properties, and yet achieves a resin regime having a targeted increase in bubble stability.
摘要:
A method of production of ethylene-based polymer particles includes the steps of: homopolymerizing ethylene or copolymerizing ethylene and a linear or branched α-olefin having 3 to 20 carbon atoms in the presence of an olefin polymerization catalyst including: (A) fine particles having an average particle diameter greater than or equal to 1 nm and less than or equal to 300 nm obtained at least by the following two steps: (Step 1) causing contact between a metal halide and an alcohol in a hydrocarbon solvent; (Step 2) causing contact between a component obtained by (Step 1) and an organoaluminum compound and/or an organoaluminumoxy compound; and (B) a transition metal compound represented in General Formula (I) or (II), and (E) an intrinsic viscosity [η] of the ethylene-based polymer particles, measured in decalin at 135° C., is from 5 to 50 dL/g.
摘要:
The present disclosure is directed to processes for producing ultrasonic sealable film structures and flexible containers with ultrasonic seals. The film structure includes a first multilayer film and a second multilayer film. Each multilayer film includes a backing layer and a seal layer. Each seal layer includes an ultrasonic sealable olefin-based polymer (USOP) having the following properties: (a) a heat of melting, ΔHm, less than 130 J/g, (b) a peak melting temperature, Tm, less than 125° C., (c) a storage modulus in shear (G′) from 50 MPa to 500 MPa, and (d) a loss modulus in shear (G″) greater than 10 MPa. The multilayer films are arranged such that the seal layer of the first multilayer film is in contact with the seal layer of the second multilayer film. The seal layers form an ultrasonic seal having a seal strength from 30 N/15 mm to 80 N/15 mm when ultrasonically sealed at 4 N/mm seal force.
摘要:
A vent structure includes: a first housing component having an opening portion for ventilation; a gas-permeable membrane that is attached to the first housing component to close the opening portion; and a laser welding portion that joins the first housing component with the gas-permeable membrane. The gas-permeable membrane includes a main body including a fluororesin film and a porous resin sheet that is laid on the main body. The porous resin sheet is located on the surface side of the vent structure. Both of the main body and the outer peripheral portion of the porous resin sheet that projects outwardly from the main body are fixed to the first housing component by the laser welding portion.
摘要:
An electronic component, such as a circuit board, fabricated by coextruding an Ultra High Molecular Weight Polyethylene (UHMWPE) filament, such as a Dyneema® filament, and a conductive material, such as an Indalloy wire, using only a three-dimensional printer, such as an FDM machine.
摘要:
A method of production of ethylene-based polymer particles includes the steps of: homopolymerizing ethylene or copolymerizing ethylene and a linear or branched α-olefin having 3 to 20 carbon atoms in the presence of an olefin polymerization catalyst including: (A) fine particles having an average particle diameter greater than or equal to 1 nm and less than or equal to 300 nm obtained at least by the following two steps: (Step 1) causing contact between a metal halide and an alcohol in a hydrocarbon solvent; (Step 2) causing contact between a component obtained by (Step 1) and an organoaluminum compound and/or an organoaluminumoxy compound; and (B) a transition metal compound represented in General Formula (I) or (II), and (E) an intrinsic viscosity [η] of the ethylene-based polymer particles, measured in decalin at 135° C., is from 5 to 50 dL/g.
摘要:
A peelable sealing structure includes a sealing layer and one or more optional additional layers. The peelable sealing structure includes a sealing surface that is formable into a peelable seal upon contact with a sealing substrate at all temperatures in a peelable seal temperature range. Moreover, the peelable sealing structure comprises a thermoplastic polymer and an additive dispersed within at least a portion of the thermoplastic polymer with the peelable sealing structure defining the sealing surface.
摘要:
The composite building panel is a decorative panel for use as a roofing shingle, an interior wall panel or the like. The composite building panel includes a layer of polymer with a layer of particulate matter partially embedded therein. The particulate matter may be in the form of granular ceramic or the like. The process for preparing the composite building panel includes the steps of first depositing a layer of the particulate matter on a molding surface, and then depositing a layer of polymer on to the layer of particulate matter, such that a sheet is formed.