摘要:
An electronic device can include a plurality of pad electrodes provided at at least one side of a substrate, at least one circuit film configured to have a plurality of connection electrodes provided at an insulating film to correspond to the plurality of pad electrodes, a plurality of solders to conductively connect the plurality of connection electrodes to the plurality of pad electrodes exposed from the circuit film one-to-one, and an insulating adhesive to fill spaces between the plurality of pad electrodes and the plurality of connection electrodes. Also, each of the plurality of solders has an edge horizontally protruding from the insulating film.
摘要:
Disclosed are a micro light emitting diode display panel, a manufacturing method thereof and a display device. The embodiment micro light emitting diode display panel includes a first metal layer and a second metal layer; the first metal layer includes a source electrode, a drain electrode and a power line; the second metal layer includes a first bonding electrode and a second bonding electrode, and the first bonding electrode is electrically connected to the source electrode through the first via hole, and the second bonding electrode is electrically connected to the power line through the second via hole; the first via hole and the second via hole are both provided with a supporting column.
摘要:
According to one embodiment, a method of manufacturing a semiconductor device, a bonding layer is formed on a first surface of a chip region of a semiconductor wafer. Semiconductor chips are singulated along a dicing region. The semiconductor chips are stacked stepwise via the bonding layer. In formation of the bonding layer of the semiconductor chip, in at least a part of a first region of the first surface not in contact with the other semiconductor chip in a stacked state, a projected section where the bonding layer is formed thicker than the bonding layer in a second region that is in contact with the other semiconductor chip is provided.
摘要:
According to one embodiment, a method of manufacturing a semiconductor device, a bonding layer is formed on a first surface of a chip region of a semiconductor wafer. Semiconductor chips are singulated along a dicing region. The semiconductor chips are stacked stepwise via the bonding layer. In formation of the bonding layer of the semiconductor chip, in at least a part of a first region of the first surface not in contact with the other semiconductor chip in a stacked state, a projected section where the bonding layer is formed thicker than the bonding layer in a second region that is in contact with the other semiconductor chip is provided.
摘要:
A semiconductor package structure is provided. The structure includes a molding compound having a dicing lane region. A semiconductor die is disposed in the molding compound and surrounded by the dicing lane region. The semiconductor die has a first surface and a second surface opposite thereto, and the first and second surfaces are exposed from the molding compound. The structure further includes a redistribution layer (RDL) structure disposed on the first surface of the semiconductor die and covering the molding compound. The RDL structure includes a photo-sensitive material and has an opening aligned with the dicing lane region.
摘要:
A connection arrangement includes at least one electric and/or electronic component. The at least one electric and/or electronic component has at least one connection face, which is connected in a bonded manner to a join partner by means of a connection layer. The connection layer can for example be an adhesive, soldered, welded, sintered connection or another known connection that connects joining partners while forming a material connection. Furthermore, a reinforcement layer is arranged adjacent to the connection layer in a bonded manner. The reinforcement layer has a higher modulus of elasticity than the connection layer. A particularly good protective effect is achieved if the reinforcement layer is formed in a frame-like manner by an outer and an inner boundary and, at least with the outer boundary thereof, encloses the connection face of the at least one electric and/or electronic component.
摘要:
The connection arrangement (100, 200, 300, 400) comprises at least one electric and/or electronic component (1). The at least one electric and/or electronic component (10) has at least one connection face (11), which is connected in a bonded manner to a join partner (40) by means of a connection layer (20). The connection layer (20) can for example be an adhesive, soldered, welded, sintered connection or another known connection that connects joining partners while forming a material connection. Furthermore, a reinforcement layer (30′) is arranged adjacent to the connection layer (20) in a bonded manner. The reinforcement layer (30′) has a higher modulus of elasticity than the connection layer (20). A particularly good protective effect is achieved if the reinforcement layer (30′) is formed in a frame-like manner by an outer and an inner boundary (36, 35) and, at least with the outer boundary (36) thereof, encloses the connection face (11) of the at least one electric and/or electronic component (10).
摘要:
In one embodiment, a semiconductor structure including a first substrate, a semiconductor device on the first substrate, a second substrate, and a conductive bond between the first substrate and the second substrate that surrounds the semiconductor device to seal the semiconductor device between the first substrate and the second substrate. The conductive bond comprises metal, silicon, and germanium. A percentage by atomic weight of silicon in the conductive bond is greater than 5%.
摘要:
A method that in one embodiment is useful in bonding a first substrate to a second substrate includes forming a layer including metal over the first substrate. The layer including metal in one embodiment surrounds a semiconductor device, which can be a micro electromechanical system (MEMS) device. On the second substrate is formed a first layer comprising silicon. A second layer comprising germanium and silicon is formed on the first layer. A third layer comprising germanium is formed on the second layer. The third layer is brought into contact with the layer including metal. Heat (and pressure in some embodiments) is applied to the third layer and the layer including metal to form a mechanical bond material between the first substrate and the second substrate in which the mechanical bond material is electrically conductive. In the case of the mechanical bond surrounding a semiconductor device such as a MEMS, the mechanical bond can be particularly advantageous as a hermetic seal for protecting the MEMS.
摘要:
A semiconductor package includes: a package substrate; a semiconductor chip disposed on the package substrate; a transparent substrate disposed on the semiconductor chip; and an adhesive layer that is disposed between the semiconductor chip and the transparent substrate. The adhesive layer is configured to block light. The transparent substrate includes: a first lower side that faces the semiconductor chip, a second lower side that faces the semiconductor chip and that is disposed above the first lower side, and a first inner side wall that connects the first lower side and the second lower side, and the adhesive layer is in contact with the second lower side and the first inner side wall.