Abstract:
The present invention is directed toward an apparatus and method of reinforcement of lead bonding in microelectronics packages. In one embodiment, a microelectronics package includes a microelectronics device having a bond pad, a conductive lead having a first end bonded to the bond pad to form a lead bond, an encapsulating material at least partially disposed about the conductive lead, and a reinforcement portion at least partially disposed about the lead bond and at least partially coupling the first end to the bond pad. The reinforcement portion has a greater modulus of elasticity and/or a greater bond strength than the encapsulating material. During thermal cycling of the microelectronics package, bond liftoff due to CTE mismatch is prevented by the reinforcement portion. The reinforcement portion may include a non-conductive adhesive material that physically secures the conductive lead to the bond pad, or alternately, an electrically conductive adhesive material that both physically and/or electrically couples the conductive lead to the bond pad. In an alternate embodiment, a microelectronics package includes a microelectronics device, an interposer, a plurality of conductive leads and a plurality of bond pads, and the reinforcement portion is disposed about a plurality of lead bonds. In this embodiment, the reinforcement portion may include a non-conductive adhesive material, or an anisotropically conductive material.
Abstract:
The present invention is directed to a method of attaching a leadframe to a singulated good die using a wet film adhesive applied in a predetermined pattern on the active surface of the good die, the lead finger of a leadframe, or both. By applying the adhesive only to identified good dice, time and material are saved over a process that applies adhesive to the entire wafer. By attaching the leadframe to the good die with a wet film, it is possible to remove the leadframe from the good die for rework if the good die subsequently tests unacceptable.
Abstract:
A conductive plastic lead frame and method of manufacturing same suitable for use in IC packaging. In a preferred embodiment, the lead frame is constructed of a plastic or polymer based lead frame structure with an intrinsic conductive polymer coating. In a second embodiment the lead frame is a composite plastic or polymeric material intermixed with an intrinsic conductive polymer coating.
Abstract:
Solid state lighting devices having side reflectivity and associated methods of manufacturing are disclosed herein. In one embodiment, a method of forming a solid state lighting device includes attaching a solid state emitter to a support substrate, mounting the solid state emitter and support substrate to a temporary carrier, and cutting kerfs through the solid state emitter and the substrate to separate individual dies. The solid state emitter can have a first semiconductor material, a second semiconductor material, and an active region between the first and second semiconductor materials. The individual dies can have sidewalls that expose the first semiconductor material, active region and second semiconductor material. The method can further include applying a reflective material into the kerfs and along the sidewalls of the individual dies.
Abstract:
Microelectronic devices and methods for manufacturing microelectronic devices are described herein. An embodiment of one such method includes attaching a plurality of singulated microelectronic dies to a removable support member with an active side of the individual dies facing toward the support member, depositing a flowable material onto the dies and a portion of the removable support member such that the flowable material covers a back side of the individual dies and is disposed between adjacent dies, and removing the support member from the active sides of the dies.
Abstract:
Some embodiments include methods of assembling integrated circuit packages in which at least two different conductive layers are formed over a bond pad region of a semiconductor die, and in which a conductive projection associated with an interposer is bonded through a gold ball to an outermost of the at least two conductive layers. The conductive layers may comprise one or more of silver, gold, copper, chromium, nickel, palladium, platinum, tantalum, titanium, vanadium and tungsten. In some embodiments, the bond pad region may comprise aluminum, an inner of the conductive layers may comprise nickel, an outer of the conductive layers may comprise gold, the conductive projection associated with the interposer may comprise gold; and the thermosonic bonding may comprise gold-to-gold bonding of the interposer projection to a gold ball, and gold-to-gold bonding of the outer conductive layer to the gold ball. Some embodiments include integrated circuit packages.
Abstract:
A method for fabricating semiconductor components includes the steps of: providing a semiconductor substrate having a circuit side, a back side and conductive vias; removing portions of the substrate from the back side to expose terminal portions of the conductive vias; depositing a polymer layer on the back side encapsulating the terminal portions; and then planarizing the polymer layer and ends of the terminal portions to form self aligned conductors embedded in the polymer layer. Additional back side elements, such as terminal contacts and back side redistribution conductors, can also be formed in electrical contact with the conductive vias. A semiconductor component includes the semiconductor substrate, the conductive vias, and the back side conductors embedded in the polymer layer. A stacked semiconductor component includes a plurality of components having aligned conductive vias in electrical communication with one another.
Abstract:
A method for balancing layer-caused compressive or tensile stress in a semiconductor die, die wafer or similar substrate uses a stress-balancing layer (SBL) attached to an opposite side from a stress-causing layer before the semiconductor die or wafer is significantly warped are provided. The SBL may also serve as, or support, an adhesive layer for die attach and be of a markable material for an enhanced marking method.
Abstract:
Methods for applying a dielectric protective layer to a wafer in wafer-level chip-scale package manufacture are disclosed. A flowable dielectric protective material with fluxing capability is applied over the active surface of an unbumped semiconductor wafer to cover active device areas, bond pads, test socket contact locations, and optional pre-scribed wafer street trenches. Preformed solder balls are then disposed over the bond pads, and the wafer is subjected to a heating process to reflow the solder balls and at least partially cure the dielectric protective material. During the heating process, the dielectric protective material provides a fluxing capability to enable the solder balls to wet the bond pads. In other exemplary embodiments, the dielectric protective material is applied over only intended physical contact locations and/or pre-scribed wafer street trenches, in which case the dielectric protective material need not include flux material and may additionally include a filler material.
Abstract:
An improved image sensor wherein a first micro-lens array comprised of one or more micro-lenses is positioned over a cavity such that incoming light is focused on the photo sensors of the image sensor. The first micro-lens array may collimate and focus incoming light onto the photo sensors of the image sensor, or may collimate incoming light and direct it to a second micro-lens array which then focuses the light onto the photo sensors. A method of fabricating the improved image sensor is also provided wherein the cavity and first micro-lens array are formed by use of a sacrificial material.