Abstract:
The present invention provides systems, methods, and screens to measure receptor internalization in a single step with appropriate automation and throughput. This approach involves luminescent labeling of the receptor of interest and the automated measurement of receptor internalization to a perinuclear location.
Abstract:
The invention provides a water-swellable hydrophobic hydrogel and analytical devices incorporating the hydrogel of the invention. Also provided are methods of using the hydrogel to prepare the analytical devices and methods of using the analytical devices to detect, quantitate and discriminate between analytes in a sample. Moreover, the invention provides kits that include components of a hydrogel and instructions for making a chip with a hydrophobic surface.
Abstract:
The invention is directed to devices that allow for simultaneous multiple biochip analysis. In particular, the devices are configured to hold multiple cartridges comprising biochips comprising arrays such as nucleic acid arrays, and allow for high throughput analysis of samples.
Abstract:
The invention provides devices and methods for acoustically determining the properties of the contents of one or more reservoirs in a plurality of reservoirs. Each reservoir is adapted to contain a fluid. An acoustic radiation generator can be positioned in acoustic coupling relationship to each of the reservoirs. Acoustic radiation generated by the acoustic radiation generator is transmitted through each reservoir to an analyzer. The analyzer is capable of analyzing a characteristic of the transmitted acoustic radiation and optionally correlating the characteristic to a property of the reservoirs' contents. Properties that may be determined include volume, temperature, and composition. The invention is particularly suited to determining the properties of the contents of a plurality of reservoirs to allow for accuracy and control over the dispensing of fluids therefrom.
Abstract:
Provided herein are biologic sample preparation and analysis systems that are rapid, portable, robust detection system for multiplexed detection of bio-threats, and which can be ruggedized to operate in harsh environments. A new method of detection called Combinatorial Probe Analysis (CPA), which provides an exponential increase in detection reliability, has been incorporated into these systems. This type of analysis greatly reduces false positives and false negatives; in addition it is reusable and eliminates special storage requirements for reagents. Specific technical advancements in the optimization of hybridization assays for nucleic acid detection on porous polymer monoliths (PPM) are also disclosed. Performing rapid and complete solubilization of viruses, vegetative bacteria and bacterial spores with an ultra high temperature solubilization protocol is also described. The systems provided herein provides the ability to perform rapid highly multiplexed analysis of a variety of bioagents, including bacteria viruses, and protein biotoxins. The systems and assays described herein are perform completely automated sample preparation and analysis, in a time frame of five minutes or less. The assay is simple in design allowing users in personal protective equipment to easily operate the system. The disclosed systems are robust, simple to use, and address the goals of the first responder community.
Abstract:
A microfluidic dispensing system may include diaphragm pumps that may be used for aspirating in corresponding ingredients via a nozzle or a tip from supply sources. Tips may be placed in contact with ingredient supply sources, and through repeated actuation of the diaphragm pumps, desired volumes of ingredients are aspirated into the tips. In some cases, an air plug is aspirated into the tips before an ingredient. Once the desired volume of each ingredient is reached within each tip, the ingredients are dispensed from the tips through repeated actuation of corresponding diaphragm pumps.
Abstract:
Reagents and methods for detecting target proteins in a sample are provided. The reagents include a replicable genetic package, a protein displayed on an exterior surface of the package that is expressed from a heterologous nucleic acid borne by the package, and one or more antibodies complexed with the expressed protein and which have an open binding site for a target protein. Thus, a segment of the nucleic acid encodes for an epitope that is shared by the expressed polypeptide and the target protein. The reagents can be utilized individually or as part of a library or an array to bind target proteins within protein samples to form one or more complexes. By determining the sequence of the segment of the heterologous nucleic acid of a package within a complex, one can identify the target protein since the segment encodes for an epitope that is shared by the expressed and target proteins.
Abstract:
Disclosed herein is a reactor plate which prevents the entry of foreign matter from outside and the pollution of an outside environment. The reactor plate includes a sealed reaction well (5), reaction well channels (13, 15, 17) connected to the reaction well (5), and a syringe (51) for sending a liquid to the reaction well channels (13, 15, 17) and the reaction well (5). The syringe (51) has a cylinder (51a), a plunger (51b), and a cover body (51d). The cover body (51d) has flexibility in the sliding direction of the plunger (51b), and is connected to the cylinder (51a) and the plunger (51b) to create a sealed space (51e) enclosed with the cylinder (51a), the plunger (51b), and the cover body (51d). The cover body (51d) is provided to hermetically cut off a part of an inner wall of the cylinder (51a) to be brought into contact with the plunger (51b) from an atmosphere outside the cylinder (51a).
Abstract:
The present invention relates to the field of DNA analysis. In particular, the present invention is directed to a device for the parallel imaging of fluorescence intensities at a plurality of sites as a measure for DNA hybridization. More particular, the present invention is directed to a device to image multiplex real time PCR or to read out DNA microarrays.
Abstract:
The object of the present invention is to provide an analysis apparatus that makes it possible to detect lights from a plurality of spots formed on an analysis chip without the lack of positioning accuracy while detecting the lights and the instability of holding the samples in spite of the downsized construction thereof.To achieve such an object as mentioned above, the analysis apparatus of the present invention for analyzing samples by means of detecting lights from a plurality of spots formed on an analysis chip so as to hold the samples comprising: a chip holder for holding the analysis chip; a light-sensitive detector for detecting lights from the spots; and a selectively light-transmitting unit for transmitting lights selectively from the desired spots to the light-sensitive detector, in a state where the analysis chip is held by the chip holder.