Abstract:
A wiring board includes: an insulating substrate; and a wiring layer including a first metal layer disposed on the insulating substrate and a second metal layer disposed so as to cover a surface of the first metal layer, the surface not being in contact with the insulating substrate, wherein the thickness of the second metal layer is 1/10 of the total thickness of the wiring layer, the wiring layer contains a migration inhibitor, and the mass Y of the migration inhibitor contained in the second metal layer is greater than the mass X of the migration inhibitor contained in the first metal layer.
Abstract:
A suspension board with circuit includes an electronic element, and a mounting portion having a terminal portion electrically connected to the electronic element. The electronic element and the mounting portion are bonded to each other via an adhesive containing a metal ion scavenger.
Abstract:
A circuit includes a structure for inhibiting dendrite formation. The circuit includes a first electrode disposed within a first area of the circuit, wherein the first electrode is configured to be coupled to an ionic source that forms ions when a first electric potential is applied to the first electrode. The circuit also includes a second electrode disposed within a second area of the circuit. The second electrode is configured to receive a second electric potential that is less than the first electric potential and that causes the ions to migrate toward the second electrode to contribute to dendrite formation. The circuit further includes a structure disposed within a third area of the circuit. The structure is configured to receive a third electric potential to create a barrier that inhibits the migration of at least some of the ions from the first to the second electrode to inhibit dendrite formation.
Abstract:
A method and an apparatus for mitigating electrical failures caused by intrusive structures. Such structures can be tin whiskers forming on electrical circuits. In an illustrative embodiment, nano-capsules are filled with some type of insulative and adhesive fluid that is adapted to bind to and coat an intrusive structure, e.g., a whisker, making the whisker electrically inactive and thereby reducing the electrical faults that can be caused by the whisker. In another illustrative embodiment, randomly oriented nano-fibers having an elastic modulus higher than tin or any other whisker material is used to arrest a growth or movement of a whisker and further reduce a likelihood that a whisker can cause an electrical fault.
Abstract:
A surface treatment method of cladding a Sn or Sn alloy coating with one or more metals selected from among Mn, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Ga, In, Ti, Ge, Pb, Sb and Bi continuously or discontinuously in such a way as to make the Sn or Sn alloy coating partially exposed, which method makes it possible to inhibit the generation of whiskers in an Sn or Sn alloy coating formed on the surface of a substrate to which other member is pressure-welded or the joint surface to be soldered. Cladding an Sn or Sn alloy coating with a prescribed metal continuously or discontinuously in such a way as to make the coating partially exposed inhibits the generation of whiskers by contact pressure in pressure welding, and further inhibits the generation of whiskers without impairing the solder wettability of the coating even when the cladding is not followed by heat treatment or reflowing.
Abstract:
A method for forming an electrical structure. The electrical structure comprises an interconnect structure and a substrate. The substrate comprises an electrically conductive pad and a plurality of wire traces electrically connected to the electrically conductive pad. The electrically conductive pad is electrically and mechanically connected to the interconnect structure. The plurality of wire traces comprises a first wire trace, a second wire trace, a third wire trace, and a fourth wire trace. The first wire trace and second wire trace are each electrically connected to a first side of the electrically conductive pad. The third wire trace is electrically connected to a second side of the electrically conductive pad. The fourth wire trace is electrically connected to a third side of said first electrically conductive pad. The plurality of wire traces are configured to distribute a current.
Abstract:
A tin or tin alloy plating film surface treatment aqueous solution that can reduce whiskers on the surface of a tin or tin alloy plating film, and can provide a favorable tin or tin alloy plating film using a simple method for tin or tin alloy plating films that are used on electronic components.
Abstract:
A process for reducing Ag electromigration in electronic circuitry includes the step of treating the electronic circuitry with an electromigration resistant composition. This process is useful in fabricating electronic devices having electronic circuitry that is close together, such as resistors, capacitors, and displays, e.g., a plasma display panel (PDP) or a liquid crystal display (LCD).
Abstract:
A wiring substrate includes: an insulating layer; a wiring formed on the insulating layer; and a solder resist layer formed on the insulating layer so as to cover at least a portion of the wiring, the solder resist layer being constituted by a plurality of layers, wherein the plurality of layers contain fillers of different grain diameters, a layer thickness of an innermost layer for constituting the plurality of layers is thicker than a layer thickness of the wiring, and a grain diameter of the filler contained in the innermost layer is smaller than a shortest interval between adjacent lines of the wiring.
Abstract:
A through hole is formed in a circuit board that has fibers dispersed in a polymer matrix. Copper is sputtered within the through hole to form a sufficiently conductive layer for electrolytic plating over the sputtered copper layer.