Abstract:
An embodiment of a solder wettable flange includes a flange body formed from a conductive material. The flange body has a bottom surface, a top surface, sidewalls extending between the top surface and the bottom surface, and one or more depressions extending into the flange body from the bottom surface. Each depression is defined by a depression surface that may or may not be solder wettable. During solder attachment of the flange to a substrate, the depressions may function as reservoirs for excess solder. Embodiments also include devices and systems that include such solder wettable flanges, and methods for forming the solder wettable flanges, devices, and systems.
Abstract:
A packaged semiconductor device may include a leadframe and a die carrier mounted to the leadframe. The die carrier is formed from an electrically and thermally conductive material. A die is mounted to a surface of the die carrier with die attach material having a melting point in excess of 240° C. A method may include providing the die carrier, melting the die attach material at a temperature in excess of 240° C. to attach the die to the surface of the die carrier to form a sub-assembly, attaching the sub-assembly to a leadframe, electrically interconnecting the die and the leadframe, and enclosing at least portions of the die and the leadframe to form a packaged device.
Abstract:
A method for a packaged leadless semiconductor device including a heat sink flange to which semiconductor dies are coupled using a high temperature die attach process. The semiconductor device further includes a frame structure pre-formed with bent terminal pads. The frame structure is combined with the flange so that a lower surface of the flange and a lower section of each terminal pad are in coplanar alignment, and so that an upper section of each terminal pad overlies the flange. Interconnects interconnect the die with the upper section of the terminal pad. An encapsulant encases the frame structure, flange, die, and interconnects with the lower section of each terminal pad and the lower surface of the flange remaining exposed from the encapsulant.
Abstract:
A single semiconductor device package that reduces electromagnetic coupling between elements of a semiconductor device embodied within the package is provided. For a dual-path amplifier, such as a Doherty power amplifier, an isolation feature that separates carrier amplifier elements from peaking amplifier elements is included within the semiconductor device package. The isolation feature can take the form of a structure that is constructed of a conductive material coupled to ground and which separates the elements of the amplifier. The isolation feature can be included in a variety of semiconductor packages, including air cavity packages and overmolded packages. Through the use of the isolation feature provided by embodiments of the present invention a significant improvement in signal isolation between amplifier elements is realized, thereby improving performance of the dual-path amplifier.
Abstract:
A method includes providing a silicon-containing die and providing a heat sink having a palladium layer over a first surface of the heat sink. A first gold layer is located over one of a first surface of the die or the palladium layer. The silicon-containing die is bonded to the heat sink, where bonding includes joining the silicon-containing die and the heat sink such that the first gold layer and the palladium layer are between the first surface of the silicon-containing die and the first surface of the heat sink, and heating the first gold layer and the palladium layer to form a die attach layer between the first surface of the silicon-containing die and the first surface of the heat sink, the die attach layer comprising a gold interface layer having a plurality of intermetallic precipitates, each of the plurality of intermetallic precipitates comprising palladium, gold, and silicon.
Abstract:
A semiconductor package (10) forms an impedance matching capacitor by utilizing an insulator (12), a conductor (19) on the dielectric, and a substrate (11) as elements of the capacitor. The capacitor is electrically connected, as part of an impedance matching network to shunt the inductance of the bonding wires (21) that connect the semiconductor die (18) an input lead (17).
Abstract:
A method and apparatus for incorporation of high power device dies into smaller system packages by embedding metal “coins” having high thermal conductivity into package substrates, or printed circuit boards, and coupling the power device dies onto the metal coins is provided. In one embodiment, the power device die can be attached to an already embedded metal coin in the package substrate or PCB. The power device die can be directly coupled to the embedded metal coin or the power device die can be attached to a metallic interposer which is then bonded to the embedded metal coin. In another embodiment, the die can be attached to the metal coin and then the PCB or package substrate can be assembled to incorporate the copper coin. Active dies are coupled to each other either through wire bonds or other passive components, or using a built-up interconnect.
Abstract:
An embodiment of a semiconductor device includes a semiconductor substrate that includes a host substrate and an upper surface, an active area, a substrate opening in the semiconductor substrate that is partially defined by a recessed surface, and a thermally conductive layer disposed over the semiconductor substrate that extends between the recessed surface and a portion of the semiconductor substrate within the active area. A method for fabricating the semiconductor device includes defining an active area, forming a gate electrode over a channel in the active area, forming a source electrode and a drain electrode in the active area on opposite sides of the gate electrode, etching a substrate opening in the semiconductor substrate that is partially defined by the recessed surface, and depositing a thermally conductive layer over the semiconductor substrate that extends between the recessed surface and a portion of the semiconductor substrate over the channel.
Abstract:
An electronic device includes a semiconductor die having a lower surface, a sintered metallic layer underlying the lower surface of the semiconductor die, a thermally conductive flow layer underlying the sintered metallic layer, and a thermally conductive substrate underlying the thermally conductive flow layer.
Abstract:
A method for a packaged leadless semiconductor device including a heat sink flange to which semiconductor dies are coupled using a high temperature die attach process. The semiconductor device further includes a frame structure pre-formed with bent terminal pads. The frame structure is combined with the flange so that a lower surface of the flange and a lower section of each terminal pad are in coplanar alignment, and so that an upper section of each terminal pad overlies the flange. Interconnects interconnect the die with the upper section of the terminal pad. An encapsulant encases the frame structure, flange, die, and interconnects with the lower section of each terminal pad and the lower surface of the flange remaining exposed from the encapsulant.