Abstract:
Methods of selectively depositing a metal selectively onto a metal surface relative to a dielectric surface. Methods include reducing a metal oxide surface to a metal surface and protecting a dielectric surface to minimize deposition thereon.
Abstract:
Provided are methods for the deposition of films comprising SiCN and SiCON. Certain methods involve exposing a substrate surface to a first and second precursor, the first precursor having a formula (XyH3-ySi)zCH4-z, (XyH3-ySi)(CH2)(SiXpH2-p)(CH2)(SiXyH3-y), or (XyH3-ySi)(CH2)n(SiXyH3-y), wherein X is a halogen, y has a value of between 1 and 3, and z has a value of between 1 and 3, p has a value of between 0 and 2, and n has a value between 2 and 5, and the second precursor comprising a reducing amine. Certain methods also comprise exposure of the substrate surface to an oxygen source to provide a film comprising SiCON.
Abstract:
Provided are atomic layer deposition methods to deposit a tungsten film or tungsten-containing film using a tungsten-containing reactive gas comprising one or more of tungsten pentachloride, a compound with the empirical formula WCl5 or WCl6.
Abstract:
Processing methods for forming iridium-containing films at low temperatures are described. The methods comprise exposing a substrate to iridium hexafluoride and a reactant to form iridium metal or iridium silicide films. Methods for enhancing selectivity and tuning the silicon content of some films are also described.
Abstract:
Methods of depositing a film selectively onto a first substrate surface relative to a second substrate surface are described. The methods include exposing the substrate surfaces to a blocking compound to selectively form a blocking layer on at least a portion of the first surface over the second surface. The substrate is sequentially exposed to a metal precursor with a kinetic diameter in excess of 21 angstroms and a reactant to selectively form a metal-containing layer on the second surface over the blocking layer or the first surface. The relatively larger metal precursors of some embodiments allow for the use of blocking layers with gaps or voids without the loss of selectivity.
Abstract:
Using the systems and methods discussed herein, CMAS corrosion is inhibited via CMAS interception in an engine environment and/or is prevented or reduced by the formation of a metal oxide protective coating on a hot engine section component. The CMAS interception can occur while the engine is in operation in flight or in a testing or quality control environment. The metal oxide protective coating can be applied over other coatings, including Gd-zirconates (GZO) or yttria-stabilized zirconia (YSZ). The metal oxide protective coating is applied at original equipment manufacturers (OEM) and can also be applied in-situ using a gas injection system during engine use in-flight or during maintenance or quality testing. The metal oxide protective coating contains a rare earth element, aluminum, zirconium, chromium, or combinations thereof and can have a thickness from 1 nm to 3,000 nm.
Abstract:
Organometallic precursors and methods of depositing high purity metal films are discussed. Some embodiments utilize a method comprising exposing a substrate surface to an organometallic precursor comprising one or more of molybdenum (Mo), tungsten (W), osmium (Os), technetium (Tc), manganese (Mn), rhenium (Re) or ruthenium (Ru), and an iodine-containing reactant comprising a species having a formula RIx, where R is one or more of a C1-C10 alkyl, C3-C10 cycloalkyl, C2-C10 alkenyl, or C2-C10 alkynyl group, I is an iodine group and x is in a range of 1 to 4 to form a carbon-less iodine-containing metal film. Some embodiments advantageously provide methods of forming metal films having low carbon content (e.g., having greater than or equal to 95% metal species on an atomic basis), without using an oxidizing agent or a reductant.
Abstract:
Methods for depositing protective coatings on aerospace components are provided and include sequentially exposing the aerospace component to a chromium precursor and a reactant to form a chromium-containing layer on a surface of the aerospace component by an atomic layer deposition process. The chromium-containing layer contains metallic chromium, chromium oxide, chromium nitride, chromium carbide, chromium silicide, or any combination thereof.
Abstract:
Methods of depositing platinum group metal films of high purity, low resistivity, and good conformality are described. A platinum group metal film is formed in the absence of an oxidant. The platinum group metal film is selectively deposited on a conductive substrate at a temperature less than 200° C. by using an organic platinum group metal precursor.
Abstract:
Methods of depositing platinum group metal films of high purity, low resistivity, and good conformality are described. A platinum group metal film is formed in the absence of an oxidant. The platinum group metal film is selectively deposited on a conductive substrate at a temperature less than 200° C. by using an organic platinum group metal precursor.