Abstract:
A method and apparatus for growing a Group-III nitride crystal using multiple interconnected reactor vessels to modify growth conditions during the ammonothermal growth of the Group-III nitride crystal, such that, by combining two or more vessels, it is possible to modify the conditions under which the Group-III nitride crystals are grown. In addition, the reactor vessel may use carbon fiber containing materials encapsulating oxide ceramic materials as structural elements to contain the materials for growing the Group-III nitride crystals at pressures or temperatures necessary for growth of the Group-III nitride crystals.
Abstract:
A method for increasing the luminous efficacy of a white light emitting diode (WLED), comprising introducing optically functional interfaces between an LED die and a phosphor, and between the phosphor and an outer medium, wherein at least one of the interfaces between the phosphor and the LED die provides a reflectance for light emitted by the phosphor away from the outer medium and a transmittance for light emitted by the LED die. Thus, a WLED may comprise a first material which surrounds an LED die, a phosphor layer, and at least one additional layer or material which is transparent for direct LED emission and reflective for the phosphor emission, placed between the phosphor layer and the first material which surrounds the LED die.
Abstract:
A nitride light emitting diode comprising at least one nitride-based active region formed on or above a patterned substrate, wherein the active region is comprised of at least one quantum well structure; and a nitride interlayer, formed on or above the active region, having at least two periods of alternating layers of InxGa1-xN and InyGa1-yN, where 0
Abstract translation:一种氮化物发光二极管,包括形成在图案化衬底上或上面的至少一个氮化物基有源区,其中所述有源区由至少一个量子阱结构构成; 以及在有源区上或上方形成的具有In x Ga 1-x N和In y Ga 1-y N的交替层的至少两个周期的氮化物中间层,其中0
Abstract:
A lighting apparatus for emitting polarized white light, which includes at least a first light source for emitting primary light comprised of one or more first wavelengths and having a first polarization direction; and at least a second light source for emitting secondary light in the first polarization direction, comprised of one or more secondary wavelengths, wherein the first light and the secondary light are combined to produce a polarized white light. The lighting apparatus may further comprise a polarizer for controlling the primary light's intensity, wherein a rotation of the polarizer varies an alignment of its polarization axis with respect to the first polarization direction, which varies transmission of the primary light through the polarizer, which controls a color co-ordinate or hue of the white light.
Abstract:
A method for the reuse of gallium nitride (GaN) epitaxial substrates uses band-gap-selective photoelectrochemical (PEC) etching to remove one or more epitaxial layers from bulk or free-standing GaN substrates without damaging the substrate, allowing the substrate to be reused for further growth of additional epitaxial layers. The method facilitates a significant cost reduction in device production by permitting the reuse of expensive bulk or free-standing GaN substrates.
Abstract:
A nonpolar III-nitride film grown on a miscut angle of a substrate, in order to suppress the surface undulations, is provided. The surface morphology of the film is improved with a miscut angle towards an a-axis direction comprising a 0.15° or greater miscut angle towards the a-axis direction and a less than 30° miscut angle towards the a-axis direction.
Abstract:
A nonpolar III-nitride film grown on a miscut angle of a substrate, in order to suppress the surface undulations, is provided. The surface morphology of the film is improved with a miscut angle towards an a-axis direction comprising a 0.15° or greater miscut angle towards the a-axis direction and a less than 30° miscut angle towards the a-axis direction.
Abstract:
A method of fabricating a Light Emitting Diode with improved light extraction efficiency, comprising depositing a plurality of Zinc Oxide (ZnO) nanorods on one or more surfaces of a III-Nitride based LED, by growing the ZnO nanorods from an aqueous solution, wherein the surfaces are different from c-plane surfaces of III-Nitride and transmit light generated by the LED.
Abstract:
Methods for fabricating a vertical cavity surface emitting laser (VCSEL) using epitaxial lateral overgrowth (ELO). The ELO layers comprise island-like III-nitride semiconductor layers grown on a substrate using a growth restrict mask, wherein the island-like III-nitride semiconductor layers comprise a light emitting resonant cavity. An aperture for the resonant cavity is fabricated on a wing of the ELO layers with distributed Bragg reflector (DBR) mirrors formed on bottom and top regions of the wing of the ELO layers.
Abstract:
A method for fabricating epitaxial light control features, without reactive ion etching or wet etching, when active layers are included. The epitaxial light control features comprise light extraction or guiding structures integrated on an epitaxial layer of a light emitting device such as a light emitting diode. The light extraction or guiding structures are fabricated on the epitaxial layer using an epitaxial lateral overgrowth (ELO) technique. The epitaxial light control features can have many different shapes and can be fabricated with standard processing techniques, making them highly manufacturable at costs similar to standard processing techniques.