摘要:
A method of infusing fibrous substrates with conductive organic particles (e.g. graphene/graphite) and conductive polymer, and the resulting electrically conductive fibrous substrates prepared therefrom are disclosed. All organic electrically conductive fibrous substrates prepared from synthetic fibrous substrates, graphene/graphite, and conductive polymer have been prepared having high electrical conductivity.
摘要:
African swine fever virus (ASFV) is the etiological agent of a contagious, often lethal viral disease of domestic pigs. The control of African Swine Fever (ASF) has been hampered by the unavailability of vaccines. Experimental vaccines have been derived from naturally occurring, cell culture-adapted, or genetically modified live attenuated ASFVs; however, these vaccines are only successful when protecting against homologous viruses. We have constructed a recombinant Δ9GL/ΔUK virus derived from the highly virulent ASFV Georgia 2007 (ASFV-G) isolate by deleting the specific virulence-associated 9GL (B119L) and the UK (DP96R) genes. In vivo, ASFV-G Δ9GL/ΔUK administered intramuscularly to swine even at relatively high doses (106 HAD50) does not induce disease. Importantly, animals infected with 104 or 106 HAD50 are solidly protected against the presentation of clinical disease when challenged at 28 days post infection with the virulent parental strain Georgia 2007.
摘要:
A semiconductor device includes an n-type ohmic contact layer, cathode and anode electrodes, p-type and n-type modulation doped quantum well (QW) structures, and first and second ion implant regions. The anode electrode is formed on the first ion implant region that contacts the p-type modulation doped QW structure and the cathode electrode is formed by patterning the first and second ion implant regions and the n-type ohmic contact layer. The semiconductor device is configured to operate as at least one of a diode laser and a diode detector. As the diode laser, the semiconductor device emits photons. As the diode detector, the semiconductor device receives an input optical light and generates a photocurrent.
摘要:
A semiconductor device includes a series of layers formed on a substrate, including a first plurality of n-type layers, a second plurality of layers that form a p-type modulation doped quantum well structure (MDQWS), a third plurality of layers disposed between the p-type MDQWS and a fourth plurality of layers that form an n-type MDQWS, and a fifth plurality of p-type layers. The first plurality of layers includes a first etch stop layer of n-type formed on an n-type contact layer. The third plurality of layers includes a second etch stop layer formed above the p-type MDQWS and a third etch stop layer formed above and offset from the second etch stop layer. The fifth plurality of layers includes a fourth etch stop layer of p-type formed above the n-type MDQWS and a fifth etch stop layer of p-type doping formed above and offset from the fourth etch stop layer.
摘要:
A semiconductor device includes a substrate supporting a plurality of layers that include at least one modulation doped quantum well (QW) structure offset from a quantum dot in quantum well (QD-in-QW) structure. The modulation doped QW structure includes a charge sheet spaced from at least one QW by a spacer layer. The QD-in-QW structure has QDs embedded in one or more QWs. The QD-in-QW structure can include at least one template/emission substructure pair separated by a barrier layer, the template substructure having smaller size QDs than the emission substructure. A plurality of QD-in-QW structures can be provided to support the processing (emission, absorption, amplification) of electromagnetic radiation of different characteristic wavelengths (such as optical wavelengths in range from 1300 nm to 1550 nm). The device can realize an integrated circuit including a wide variety of devices that process electromagnetic radiation at a characteristic wavelength(s) supported by the QDs of the QD-in-QW structure(s). Other semiconductor devices are also described and claimed.
摘要:
The present invention provides methods of reversing the activation of hepatic stellate cells using astaxanthin (ASTX), or a pharmaceutically acceptable salt thereof, for use in the reversal of fibrosis and fibrotic diseases.
摘要:
A method of forming an integrated circuit employs a plurality of layers supported on a substrate that include i) n-type contact layer, ii) a p-type modulation doped quantum well structure (MDQWS) above the n-type contact layer, iii) n-type MDQWS above the p-type MDQWS, and iv) p-type contact layer(s) above the n-type MDQWS. A feature for a thyristor is defined by a mesa at the p-type contact layer of iv). A first layer of metal is deposited on the feature, which is then etched for at least one other device. Additional layer(s) of metal is deposited on the feature to form cumulative metal layers, which are etched away to form a set of mesas and corresponding electrodes for the thyristor. The cumulative metal layers that cover the feature and contact the mesa at the p-type contact layer of iv) are patterned to form an anode electrode of the thyristor.
摘要:
An optical flip-flop circuit that includes an optical thyristor configured to receive a digital optical signal input and produce a digital signal output based on the ON/OFF state of the digital optical signal input. The optical flip-flop circuit further includes control circuitry operably coupled to the terminals of the optical thyristor. The control circuitry is configured to control switching operation of the optical thyristor in response to the level of a digital electrical signal input.
摘要:
A semiconductor device suitable for power applications includes a thyristor epitaxial layer structure defining an anode region offset vertically from a cathode region with a plurality of intermediate regions therebetween. An anode electrode is electrically coupled to the anode region. A cathode electrode is electrically coupled to the cathode region. A switchable current path that extends vertically between the anode region and the cathode region has a conducting state and a non-conducting state. An epitaxial resistive region is electrically coupled to and extends laterally from one of the plurality of intermediate regions. An FET is provided having a channel that is electrically coupled to the epitaxial resistive region. The FET can be configured to inject (or remove) electrical carriers into (or from) the one intermediate region via the epitaxial resistive region in order to switch the switchable current path between its non-conducting state and its conducting state.
摘要:
A charge pump circuit for an optical phase lock loop, which includes first and second optical thyristors configured to receive respective first and second digital optical signal inputs. A first control circuit receives a first digital electrical signal input corresponding to the second digital optical signal input, and a second control circuit receives a second digital electrical signal input corresponding to the first digital optical signal input. The first control circuitry controls switching operation of the first optical thyristor that sources current to a first filter circuit in response to the levels of the first digital optical signal input and the first digital electrical signal input. The second control circuitry control switching operation of the second optical thyristor that sinks current from a second filter circuit in response to the levels of the second digital optical signal input and the second digital electrical signal input.