Abstract:
The present invention provides novel plasma sources useful in the thin film coating arts and methods of using the same. More specifically, the present invention provides novel linear and two dimensional plasma sources that produce linear and two dimensional plasmas, respectively, that are useful for plasma-enhanced chemical vapor deposition. The present invention also provides methods of making thin film coatings and methods of increasing the coating efficiencies of such methods.
Abstract:
The present invention provides novel plasma sources useful in the thin film coating arts and methods of using the same. More specifically, the present invention provides novel linear and two dimensional plasma sources that produce linear and two dimensional plasmas, respectively, that are useful for plasma-enhanced chemical vapor deposition. The present invention also provides methods of making thin film coatings and methods of increasing the coating efficiencies of such methods.
Abstract:
The present invention provides novel plasma sources useful in the thin film coating arts and methods of using the same. More specifically, the present invention provides novel linear and two dimensional plasma sources that produce linear and two dimensional plasmas, respectively, that are useful for plasma-enhanced chemical vapor deposition. The present invention also provides methods of making thin film coatings and methods of increasing the coating efficiencies of such methods.
Abstract:
When an amorphous silicon film is formed by a plasma CVD method, a hydrogen gas is supplied into a chamber before the start of film formation to cause discharge. In this state, film formation is not made. At the step where the discharge becomes stable, silane as a film forming gas is supplied into the chamber. At the same time, supply of the hydrogen gas is stopped. Silane is decomposed by the stable discharge, and film formation of an amorphous silicon film is made. By doing so, it is possible to eliminate the instability at the start of discharge. Film formation can be carried out in the state where the discharge is always stable. Also, in the plasma CVD method using silane as the film forming gas, supply of the silane gas is stopped in the state where the radio frequency discharge is maintained, and instead of the silane gas, the hydrogen gas as the discharge gas is supplied. For a predetermined period of time, plasma without film formation by decomposition of the hydrogen gas is formed. Since a negative self bias is applied to the formed surface in this state, negatively charged minute particles do not adhere to the formed surface. The discharge is stopped in the state where the minute particles in the atmosphere are exhausted. In this way, the state where the minute particles do not adhere to the formed surface can be made.
Abstract:
A method for forming a refractory metal layer that features two-stage nucleation prior to bulk deposition of the same. The method includes placing a substrate in a deposition zone, flowing, into the deposition zone during a first deposition stage, a silicon source, such as a silane gas, and a tungsten source, such as tungsten-hexafluoride gas, so as to obtain a predetermined ratio of the two gases therein. During a second deposition stage, subsequent to the first deposition stage, the ratio of the two gases is varied. Specifically, in the first deposition stage there is a greater quantity of silane gas than tungsten-hexafluoride gas. In the second deposition stage there may be a greater quantity of tungsten-hexafluoride than silane.
Abstract:
Provided are a member for plasma processing device which has an excellent plasma resistance and improved adhesion strength of a film to a base material, and a plasma processing device provided with the same. A member for plasma processing device includes: a base material containing a first element which is a metal element or a metalloid element; a film containing a rare-earth element oxide, or a rare-earth element fluoride, or a rare-earth element oxyfluoride as a major constituent, the film being located on the base material; and an amorphous portion containing the first element, a rare earth element, and at least one of oxygen and fluorine, the amorphous portion being interposed between the base material and the film.
Abstract:
Embodiments of a lift apparatus for use in a substrate processing chamber are provided herein. In some embodiments, a lift apparatus includes: a plurality of first lift pin assemblies configured to raise or lower a substrate having a given diameter when disposed thereon, wherein each of the first lift pin assemblies includes a first lift pin disposed on a first bellows assembly; a plurality of second lift pin assemblies arranged in a circle having a diameter greater than the given diameter and configured to raise or lower an annular chamber component, wherein each of the second lift pin assemblies includes a second lift pin disposed on a second bellows assembly; an actuator; and a lift assembly coupled to the actuator and configured to raise or lower each of the first lift pin assemblies and the second lift pin assemblies by movement of the actuator.
Abstract:
Techniques described herein relate to methods, apparatus, and systems for promoting adhesion between a substrate and a metal-containing photoresist. For instance, the method may include receiving the substrate in a reaction chamber, the substrate having a first material exposed on its surface, the first material including a silicon-based material and/or a carbon-based material; generating a plasma from a plasma generation gas source that is substantially free of silicon, where the plasma includes chemical functional groups; exposing the substrate to the plasma to modify the surface of the substrate by forming bonds between the first material and chemical functional groups from the plasma; and depositing the metal-containing photoresist on the modified surface of the substrate, where the bonds between the first material and the chemical functional groups promote adhesion between the substrate and the metal-containing photoresist.
Abstract:
A roll to roll fabrication apparatus includes: a vacuum chamber having an installation chamber and a process chamber; a preprocessing unit in the installation chamber to process a surface of a film which is transferred to enhance a film characteristic in a subsequent CVD process; a process drum in the process chamber to wind the film thereon; a process treatment unit in the process chamber to form a layer by performing a CVD process on the film wound on the process drum; and a plurality of heaters in the installation chamber and the process chamber to gradually increase a temperature of the film wound on the process drum to prevent application of a thermal impact to the film due to the high-temperature process drum.
Abstract:
A method includes:generating a peroxide radical on a dielectric substrate surface by treating the dielectric substrate surface with atmospheric pressure plasma using a rare gas; fixing a functional group forming a coordinate bond with a silver ion, by reacting a grafting agent; and applying a silver-containing composition to the substrate surface, followed by heating and curing the silver-containing composition, to thereby form a silver thin film layer, the silver-containing composition containing a silver compound (A) represented by Formula (1) and an amine compound (B) represented by Formula (2), the silver compound (A) being contained in an amount of 10 to 50% by mass, the amine compound (B) being contained in an amount of 50 to 90% by mass, relative to a total amount of 100% by mass of the silver compound (A) and the amine compound (B).The method enables to form a metal film having high adhesiveness even on the surface of a fluorine resin, which is suitable as a dielectric substrate due to its property of avoidance of delay in signal transmission speed or increase in power consumption, but has extremely low adhesiveness. (R1; a hydrogen atom, —(CY2)a-CH3, or —((CH2)b-O—CHZ)c-CH3; R2: —(CY2)d-CH3 or —((CH2)e-O—CHZ)f-CH3; Y: a hydrogen atom or —(CH2)g-CH3; Z: a hydrogen atom or —(CH2)h-CH3; a: an integer of 0 to 8; b: an integer of 1 to 4; c: an integer of 1 to 3; d: an integer of 1 to 8; e: an integer of 1 to 4; f: an integer of 1 to 3; g: an integer of 1 to 3; h: an integer of 1 or 2)