Abstract:
A suction surface member is provided on an electronic component module including an electronic component base plate and surface mount device mounted on the electronic component base plate in order to provide a suction surface at a location that is substantially at the same level as or higher than that of an upper end of a transistor that is the tallest surface mount device. The suction head adheres to the suction surface to hold the electronic component module and the electronic component module is mounted on a motherboard defining the target board. Then a treatment is performed to prevent a situation in which an upper end of the suction surface member is higher than the upper end of the tallest surface mount device mounted on the electronic component base plate.
Abstract:
In a method of shielding a circuit device, a circuit board on which an electronic component has mounted and which has a ground connection portion is provided. An entire portion of the circuit board is inserted into a shield pack having a sack shape. The shield pack has an insulating layer as an innermost layer and an electric conductive layer as an outermost layer. The insulating layer of the shield pack is contacted with the electronic component and the circuit board. The ground connection portion of the circuit board is connected to the electric conducive layer of the shield pack.
Abstract:
In a method of shielding a circuit device, a circuit board on which an electronic component has mounted and which has a ground connection portion is provided. An entire portion of the circuit board is inserted into a shield pack having a sack shape. The shield pack has an insulating layer as an innermost layer and an electric conductive layer as an outermost layer. The insulating layer of the shield pack is contacted with the electronic component and the circuit board. The ground connection portion of the circuit board is connected to the electric conducive layer of the shield pack.
Abstract:
A method of forming conductive structures on the contact pads of a substrate, such as a semiconductor die or a printed circuit board. A solder mask is secured to an active surface of the substrate. Apertures through the solder mask are aligned with contact pads on the substrate. The apertures may be preformed or formed after a layer of the material of which the solder mask is comprised has been disposed on the substrate. Conductive material is disposed in and shaped by the apertures of the solder mask to form conductive structures in communication with the contact pads exposed to the apertures. Sides of the conductive structures are exposed through the solder mask, either by removing the solder mask from the substrate or by reducing the thickness of the solder mask. The present invention also includes semiconductor devices formed during different stages of the method of the present invention.
Abstract:
A method for manufacturing membranes after having defined the button key position circuit and matrix layout under the conditions of without jumping and without generating ghost keys includes the steps of: heating and pre-shrinking the PET of a membrane, printing a circuit made from silver paste on the membrane, printing an insulation layer on the printed silver paste circuit or printing carbon powders, folding the membrane and welding the membrane by supersonic wave, and finally punching structural holes on the membrane to complete the membrane production.
Abstract:
A flexible printed circuit comprising a plastic film and a conducting layer, wherein the plastic film exhibits a heat shrinkage rate ellipse having an eccentricity of not more than 0.7 and preferably exhibits an ultrasonic wave propagation rate ellipse having an eccentricity of not more than 0.4 and a polarized microwave transmission intensity ellipse having an eccentricity of not more than 0.55. The flexible printed circuit has improved dimensional accuracy owing to the dimensional stability of the plastic film.
Abstract:
A method of making a planar, subsurface electronic circuit having at least one electronic circuit component assembled therewith is disclosed. First, three dimensional, essentially square channels interspersed with lands are formed within a dielectric material on a substrate. The channels are then filled in one pass with a curable polymeric material containing a conductive metal filler so that the upper surfaces of the circuit trace formed by this conductive material are at essentially the same level as the upper surface of the lands. Circuit components are place to engage the conductive material. The curable material is then cured after placing the electronic component(s).
Abstract:
An electrically conductive cement having substantially stable conductivity and resistance characteristics under high humidity conditions comprises a mixture of two epoxy resins with the proportion of each epoxy resin adjusted to provide a volumetric shrinkage in the mixture in the 4 to 16% and a conductive silver particular filler including agglomerates having size and surface characteristics that maintain stable electrical contact with an electrical component lead. The epoxy mixture is preferably a combination of a high-shrinkage epoxy resin and a lower-shrinkage epoxy resin in the appropriate amounts of each so as to produce the desired volumetric shrinkage characteristic. The conductive particle filler is preferably an admixture of silver flakes, silver powder, and an effective amount of silver agglomerates. The agglomerates are irregularly shaped particles having multiple surface indentations and recesses to produce many rough-edged salients or ridges and having a particle length, width, and thickness aspect ratio of about 1:1:1. An effective amount of such agglomerates appears to effect penetration of surface oxides when establishing the cemented connection as a result of the volumetric shrinkage of the polymeric carrier upon curing.
Abstract:
A system for protecting electronics includes a printed wiring assembly (PWA) having a surface with at least one electronic component. The system also includes a water resistant film configured to be used as a conformal coating on the PWA and further configured to be placed on the surface of the PWA and to shrink about the at least one electronic component.
Abstract:
A method for fabricating printed electronics includes printing a trace of an electrical component on a first substrate to form a first layer. The method further includes printing a trace of an electrical component on at least one additional substrate to form at least one additional layer. The first layer is stacked with the at least one additional layer to create an assembled electrical device. At least one of the layers is modified after printing.