Abstract:
In the present invention, a thin film capacitor, having a dielectric layer of a metal oxide having perovskite crystal structure, is formed on a first substrate before the capacitor is transferred onto a second substrate on which an electronic circuit has been formed. Thereafter, patterning of the capacitor and electrical connection are to be carried out.
Abstract:
This invention is to provide a printed circuit board suitable for the high densification of mounting parts using a solder bump and for the improvements of connection reliability and mounting reliability, and proposes a printed circuit board comprising a mounting pad provided with a solder bump by covering a mounting surface with a solder resist, characterized in that a position of forming the solder bump is arranged so as to match with a position of a viahole, or a size of opening portion formed in the solder resist is made larger than a size of a land of the viahole so as not to overlap the solder resist with the viahole.
Abstract:
A substrate of multilayered structure having a plurality of sets of an insulation layer and a wiring line layer, and having one face for mounting a semiconductor element thereon and the other face on which external connection terminals are to be provided, the face for mounting a semiconductor element being provided with pads to be bonded to an electrode terminal of the semiconductor element, the other face being provided with pads to be bonded to an external connection terminal, such as a terminal formed of a solder ball, and the wiring line layers on both sides of an insulation layer being connected with each other by vias piercing the insulation layer, wherein the surfaces of the pads to be bonded to an electrode terminal of a semiconductor element are flat and are in the same plane. A method of manufacturing such a multilayered substrate is also disclosed.
Abstract:
In a manufacturing method of a printed circuit board comprising a process of coating insulative resin on a surface of a printed circuit board having a blind hole and a process of filling up the insulative resin in the blind hole, the printed circuit board coated with the insulative resin is kept in a low pressure atmosphere of 1.3 to 666 hPa, and then the insulative resin is hardened, so that the insulative resin is filled up in the blind hole appropriately.
Abstract:
An adhesion pad for adhering a semiconductor chip or a ball grid array module to a supporting substrate includes a stepped or tapered structure. The structure is composed of at least one solder wettable metal or alloy layer having solder deposited thereon. The stepped or tapered structure prevents a fatigue crack from propagating in the X-Y plane above the adhesion pad.
Abstract:
A multilayer structure includes a plurality of stacked circuit panels interconnected by posts extending through each panel. Circuit traces provided on one or both surfaces of each circuit panel interconnect the connectors in a predetermined pattern. The connectors are provided with a blind via which is in electrical contact with a pair of contact pads on either surface of the circuit panel. One of the contact pads has an opening to allow access of a connecting post to the interior of the blind via, the other contact pad having a protruding post. The circuit panels are interconnected by inserting the post of one circuit panel into the blind via of an adjacent circuit panel.
Abstract:
Method and apparatus for fabricating fine pitch pattern multilayer printed circuit boards involving laminar stackable board layers providing power distribution, signal distribution and capacitive decoupling. In one respect, the invention relates to the fabrication of board layers by beginning with a metallic core, patterning the core, selectively enclosing the core in a dielectric, selectively depositing metal to form vias, plugs and signal lines, and forming dendrites with joining metallurgy on the vias and plugs to provide stackable connection from above or below the plane of the board layer. In another aspect, the invention is directed to the use of a sol-gel process to form a thin high dielectric constant crystalline film onto a metallic sheet followed with a deposition of a metallic layer onto the high dielectric constant film. The film serves as the dielectric of a capacitor layer which is thereafter in succession patterned, covered by a dielectric, and has selectively deposited a metallic layer for interconnecting the capacitor and forming vias. The ends of the vias are thereafter subject to dendritic growth and joining metallurgy to provide stackable interconnection capability. A multilayer composite laminar stackable circuit board structure is created using, as appropriate, layers having metallic cores and layers having capacitively configured cores. The multilayer laminar stackable circuit board provides direct vertical connection between surface mounted electronic components and the power, signal and capacitive decoupling layers of the composite board through the dendrites and joining metallurgy of the via and plug formations.
Abstract:
The invention relates to a novel process for producing a copper ceramic substrate with at least one through-plated hole, with a ceramic layer which has at least one opening for the through-plating, on one surface side is provided with a first metal coating and on the opposite surface side with a second metal coating which extends into at least one opening and is connected to the first metal coating, for formation of the first metal coating a copper foil being applied by DCB technique to one surface side of the ceramic layer.
Abstract:
A method of making a low inductance conductive via in a laminated substrate by providing a first conductive layer. A first dielectric layer is formed on the first conductive layer. A second conductive layer is formed on the first dielectric layer. A first conductive path is formed in the first conductive layer extending along a first route between a first node and a second node. A first conductive blind-via is connected to the first conductive path at the second node, with the first-blind via being formed in the first dielectric layer at the second node. Lastly, a second conductive path is formed in the second conductive layer that is connected to the first blind via. The second conductive path extends between a third node and the first blind via along a second route. The second route corresponds identically to at least a portion of the first route.
Abstract:
An adhesion pad for adhering a semiconductor chip or a ball grid array module to a supporting substrate includes a stepped or tapered structure. The structure is composed of at least one solder wettable metal or alloy layer having solder deposited thereon. The stepped or tapered structure prevents a fatigue crack from propagating in the X-Y plane above the adhesion pad.