Abstract:
This invention provides a magnetic shielding package structure of a magnetic memory device, in which at least a magnetic memory device is embedded between a magnetic shielding substrate and a magnetic shielding layer. A plurality of through vias is formed in the magnetic shielding substrate or the magnetic shielding layer, and a plurality of conductive contacts passes through the through vias such that electrical connection between the magnetic memory device and the external is established.
Abstract:
A circuit structure and a fabrication method thereof manly use a plurality of wires to connect in series a plurality of pads to form a stretchable circuit. Each of the wires has a first end, a second end and an intermediate segment located between the first end and the second end, wherein the first end and the second end are respectively connected to different pads, and the position of the intermediate segment is higher than the positions of the first end and the second end. Since the connection manner of the wires and the pads has 3-D freedoms, the circuit structure can withstand both horizontal and vertical deformations and has an outstanding reliability.
Abstract:
A device includes a top dielectric layer having a top surface. A metal pillar has a portion over the top surface of the top dielectric layer. A non-wetting layer is formed on a sidewall of the metal pillar, wherein the non-wetting layer is not wettable to the molten solder. A solder region is disposed over and electrically coupled to the metal pillar.
Abstract:
A package component is free from active devices therein. The package component includes a substrate, a through-via in the substrate, a top dielectric layer over the substrate, and a metal pillar having a top surface over a top surface of the top dielectric layer. The metal pillar is electrically coupled to the through-via. A diffusion barrier is over the top surface of the metal pillar. A solder cap is disposed over the diffusion barrier.
Abstract:
A device includes a first die having a first side and a second side opposite to first side, the first side includes a first region and a second region, and a first metal bump of a first horizontal size formed on the first region of the first side of the first die. A second die is bonded to the first side of the first die through the first metal bump. A dielectric layer is formed over the first side of the first die and includes a first portion directly over the second die, a second portion encircling the second die, and an opening exposing the second region of the first side of the first die. A second metal bump of a second horizontal size is formed on the second region of the first side of the first die and extending into the opening of the dielectric layer. The second horizontal size is greater than the first horizontal size. An electrical component is bonded to the first side of the first die through the second metal bump.
Abstract:
A flexible circuit structure with stretchability comprises a flexible substrate, a metal layer, and a plurality of flexible bumps. The metal layer is formed on the flexible substrate. These flexible bumps are formed on the metal layer and the flexible substrate.
Abstract:
A method includes forming a dielectric layer over a substrate, forming an interconnect structure over the dielectric layer, and bonding a die to the interconnect structure. The substrate is then removed, and the dielectric layer is patterned. Connectors are formed at a surface of the dielectric layer, wherein the connectors are electrically coupled to the die.
Abstract:
A circuit structure and a fabrication method thereof manly use a plurality of wires to connect in series a plurality of pads to form a stretchable circuit. Each of the wires has a first end, a second end and an intermediate segment located between the first end and the second end, wherein the first end and the second end are respectively connected to different pads, and the position of the intermediate segment is higher than the positions of the first end and the second end. Since the connection manner of the wires and the pads has 3-D freedoms, the circuit structure can withstand both horizontal and vertical deformations and has an outstanding reliability.
Abstract:
In one example embodiment, a flexible circuit structure with stretchability is provided that includes a flexible substrate, a plurality of flexible bumps formed on the flexible substrate, and a metal layer formed on the plurality of flexible bumps and the flexible substrate.
Abstract:
A device includes a first die having a first side and a second side opposite to first side, the first side includes a first region and a second region, and a first metal bump of a first horizontal size formed on the first region of the first side of the first die. A second die is bonded to the first side of the first die through the first metal bump. A dielectric layer is formed over the first side of the first die and includes a first portion directly over the second die, a second portion encircling the second die, and an opening exposing the second region of the first side of the first die. A second metal bump of a second horizontal size is formed on the second region of the first side of the first die and extending into the opening of the dielectric layer. The second horizontal size is greater than the first horizontal size. An electrical component is bonded to the first side of the first die through the second metal bump.