摘要:
A method of forming a solder bump may involve forming a first photoresist pattern on a wafer having a pad. The first photoresist pattern may have an opening that exposes a portion of the pad. A first under bump metallurgy (UBM) layer may be formed on the pad, and a second UBM layer may be formed on the first photoresist pattern. A second photoresist pattern may be formed that exposes the first UBM layer and covers the second UBM layer. A solder bump may be formed in the opening. The second photoresist pattern and the first photoresist pattern may be removed using a stripper, thereby removing the second UBM layer by a lift-off method.
摘要:
The chip package includes a first and second semiconductor chip. The first semiconductor chip has a first connection structure that electrically connects to a bond pad on a first surface of the first semiconductor chip. The second semiconductor chip has a second connection structure. The second connection structure is electrically connected to a bond pad on a first surface of the second semiconductor chip and extends through the second semiconductor chip to a second surface of the second semiconductor chip. A portion of the second connection structure extending to the second surface of the second semiconductor chip is electrically connected to the first connection structure and formed of a harder material than the first connection structure.
摘要:
A structure useful for electrical interconnection comprises a substrate; a plurality of porous dielectric layers disposed on the substrate; an etch stop layer disposed between a first of the dielectric layers and a second of the dielectric layers; and at least one thin, tough, non-porous dielectric layer disposed between at least one of the porous dielectric layers and the etch stop layer. A method for forming the structure comprising forming a multilayer stack of porous dielectric layers on the substrate, the stack including the plurality of porous dielectric layers, and forming a plurality of patterned metal conductors within the multilayer stack. Curing of the multilayer dielectric stack may be in a single cure step in a furnace. The application and hot plate baking of the individual layers of the multi layer dielectric stack may be accomplished in a single spin-coat tool, without being removed, to fully cure the stack until all dielectric layers have been deposited.
摘要:
A semiconductor device includes a substrate, and a through electrode passing through the substrate. The semiconductor device has a pad region and a through electrode region. A pad covers the pad region, extends into the through electrode region, and delimits an opening in the through electrode region. A through electrode extends through the semiconductor substrate below the hole in the pad in the through region.
摘要:
The present invention is directed to flux compositions and uses thereof. One composition comprises an activator and a solvent being a glycerol ethoxylate with a molecular weight of 200-500. Another composition comprises an activator, a solvent being a glycerol ethoxylate with a molecular weight of 200-500 and an amine. A soldering method for joining objects is also provided, comprising the steps of applying a flux composition to at least a portion of one or more of the objects, and joining the objects.
摘要:
The present invention relates to a compressor in which a rotary member suspended on a stationary member is rotated to compress the refrigerant. The rotary member is suspended on a first stationary member and rotatably supported on a second stationary member spaced apart from the first stationary member, which achieves the structural stability and allows the components to be easily centered and assembled. A refrigerant suction passage and a refrigerant discharge passage are improved such that the refrigerant can be sucked and discharged without a valve.
摘要:
The present invention provides a motor, comprising: a stator including a coil wiring portion to which power is supplied; a rotor, which includes conductive bars, flux barriers, and permanent magnets, and rotates through an interactive electromagnetic force between the conductive bars, flux barriers, and permanent magnets and the coil wiring portion of the stator; an integrated capacitor, which is electrically connected to the coil wiring portion and includes two capacitors connected to each other in parallel, an electrical switch serially connected to one of the two capacitors, and a casing on which the two capacitors and the electrical switch are securely mounted.
摘要:
Methods of forming an integrated circuit device include forming an interlayer dielectric layer on a first surface of a semiconductor substrate and then forming an interconnect hole that extends through the interlayer dielectric layer and into the semiconductor substrate. A first sidewall spacer layer is formed on a sidewall of the interconnect hole. The semiconductor substrate at a bottom of the interconnect hole is isotropically etched to define an undercut recess in the semiconductor substrate. This etching step is performed using the first sidewall spacer layer as an etching mask. The interconnect hole and the uncut recess are then filled with a through-via electrode. A second surface of the semiconductor substrate is removed for a sufficient duration to expose the uncut recess containing the through-via electrode.
摘要:
A stack circuit member may include a first circuit member and a second circuit member. The first and the second circuit members may be electrically and mechanically connected together using a thermocompression bonding method. A photosensitive polymer layer may be interposed between the first circuit member and the second circuit member. A gap fill process and an electrical connection process may be performed at the same time.
摘要:
In a stacked chip configuration, and manufacturing methods thereof, the gap between a lower and an upper chip is filled completely using a relatively simple process that eliminates voids between the lower and upper chips and the cracking and delamination problems associated with such voids. The present invention is applicable to both chip-level bonding and wafer-level bonding approaches. A photosensitive polymer layer is applied to a first chip, or wafer, prior to stacking the chips or stacking the wafers. The photosensitive polymer layer is partially cured, so that the photosensitive polymer layer is made to be structurally stable, while retaining its adhesive properties. The second chip, or wafer, is stacked, aligned, and bonded to the first chip, or wafer, and the photosensitive polymer layer is then cured to fully bond the first and second chips, or wafers. In this manner, adhesion between chips/wafers is greatly improved, while providing complete gap fill. In addition, mechanical reliability is improved, alleviating the problems associated with cracking and delamination, and leading to an improvement in device yield and device reliability.