摘要:
A wafer level chip scale package and method of laser marking the same are disclosed. The method includes forming a plurality of semiconductor devices on a frontside surface of a wafer, metallizing device contacts on the frontside surface of the wafer, grinding the backside surface of the wafer, silicon etching the backside surface of the wafer, laser marking the backside surface of the wafer following the silicon etch step, oxide etching the backside surface of the wafer following the laser marking step, depositing a metal layer on the backside surface of the wafer following the oxide etch step, and dicing the wafer into wafer level chip scale packages. A wafer level chip scale package includes a mark formed on a backside surface thereof, the mark comprising a plurality of trenches formed in a silicon backside surface and corresponding indentations formed in an overlaying back metal layer
摘要:
The present invention relates to pharmaceutical technical field, to melonine bisindole compounds, pharmaceutical compositions thereof, and preparation methods thereof. Specifically, the present invention relates to melonine bisindole compounds of Formula I, pharmaceutically acceptable salts thereof, pharmaceutical compositions comprising the compounds or pharmaceutically acceptable salts thereof. The present invention further relates to method for preparing the melonine bisindole compounds of Formula I or pharmaceutically acceptable salts thereof, and the use of the melonine bisindole compounds of Formula I or pharmaceutically acceptable salts thereof in the manufacture of a medicament for the treatment or prophylaxis of cancers.
摘要:
A semiconductor device with substrate-side exposed device-side electrode (SEDE) is disclosed. The semiconductor device has semiconductor substrate (SCS) with device-side, substrate-side and semiconductor device region (SDR) at device-side. Device-side electrodes (DSE) are formed for device operation. A through substrate trench (TST) is extended through SCS, reaching a DSE turning it into an SEDE. The SEDE can be interconnected via conductive interconnector through TST. A substrate-side electrode (SSE) and a windowed substrate-side passivation (SSPV) atop SSE can be included. The SSPV defines an area of SSE for spreading solder material during device packaging. A device-side passivation (DSPV) beneath thus covering the device-side of SEDE can be included. A DSE can also include an extended support ledge, stacked below an SEDE, for structurally supporting it during post-wafer processing packaging. The projected footprint of extended support ledge onto the major SCS plane can essentially enclose the correspondingly projected footprint of SEDE.
摘要:
A thin and stackable power MOSFET (SP-MOSFET) and method are proposed. The SVP-MOSFET includes semiconductor substrate with bottom drain metal layer. Formed atop the semiconductor substrate are trenched gate regions and source-body regions. A patterned gate metal layer and source-body metal layer respectively contact trenched gate regions and source-body regions. At least one of through substrate drain via (TSDV), through substrate gate via (TSGV), through substrate source via (TSSV) is provided. The TSDV, formed through semiconductor substrate and in contact with drain metal layer, has top drain contacting pad and bottom drain contacting pad for making top and bottom contacts thereto. Similarly the TSGV, formed through semiconductor substrate and in contact with gate metal layer, has top gate contacting pad and bottom gate contacting pad. Likewise the TSSV, formed through semiconductor substrate and in contact with source-body metal layer, has top source contacting pad and bottom source contacting pad.
摘要:
This invention discloses semiconductor device that includes a top region and a bottom region with an intermediate region disposed between said top region and said bottom region with a controllable current path traversing through the intermediate region. The semiconductor device further includes a trench with padded with insulation layer on sidewalls extended from the top region through the intermediate region toward the bottom region wherein the trench includes randomly and substantially uniformly distributed nano-nodules as charge-islands in contact with a drain region below the trench for electrically coupling with the intermediate region for continuously and uniformly distributing a voltage drop through the current path.
摘要:
A variety of improved approaches for packaging integrated circuits are described. In one described approach, a multiplicity of dice are mounted on a carrier (e.g., a plastic carrier). Each die has a plurality of wire bonded contact studs secured to its associated I/O pads. An encapsulant is applied over the carrier to cover the dice and at least portions of the contact studs to form an encapsulant carrier structure. After the encapsulant has been applied, a first surface of the encapsulant and the contact studs are ground such that exposed portions of the contact studs are smooth and substantially co-planar with the encapsulant. In some embodiments, a redistribution layer is formed over the encapsulant carrier structure and solder bumps are attached to the redistribution layer. A contact encapsulant layer is applied over the encapsulant carrier structure to provide extra mechanical support for the resulting packages.
摘要:
A variety of improved approaches for packaging integrated circuits are described. In one described approach, a multiplicity of dice are mounted on a carrier (e.g., a plastic carrier). Each die has a plurality of wire bonded contact studs secured to its associated I/O pads. An encapsulant is applied over the carrier to cover the dice and at least portions of the contact studs to form an encapsulant carrier structure. After the encapsulant has been applied, a first surface of the encapsulant and the contact studs are ground such that exposed portions of the contact studs are smooth and substantially co-planar with the encapsulant. In some embodiments, a redistribution layer is formed over the encapsulant carrier structure and solder bumps are attached to the redistribution layer. A contact encapsulant layer is applied over the encapsulant carrier structure to provide extra mechanical support for the resulting packages.
摘要:
A semiconductor device package die and method of manufacture are disclosed. The device package die may comprise a device substrate having one or more front electrodes located on a front surface of the device substrate and electrically connected to one or more corresponding device regions formed within the device substrate proximate the front surface. A back conductive layer is formed on a back surface of the device substrate. The back conductive layer is electrically connected to a device region formed within the device substrate proximate a back surface of the device substrate. One or more conductive extensions are formed on one or more corresponding sidewalls of the device substrate in electrical contact with the back conductive layer, and extend to a portion of the front surface of the device substrate. A support substrate is bonded to the back surface of the device substrate.
摘要:
An inductor may include a planar ferrite core. A first group of one or more grooves is formed in a first side of the ferrite core. A second group of two or more grooves is formed in a second side of the ferrite core. The grooves in the first and second groups are oriented such that each groove in the first group overlaps with two corresponding grooves in the second group. A first plurality of vias communicates through the ferrite core between the first and second sides of the ferrite core. Each via is located where a groove in the first group overlaps with a groove in the second group. A conductive material is disposed in the first and second groups of grooves and in the vias to form an inductor coil.
摘要:
A lead frame-based discrete power inductor is disclosed. The power inductor includes top and bottom lead frames, the leads of which form a coil around a single closed-loop magnetic core. The coil includes interconnections between inner and outer contact sections of the top and bottom lead frames, the magnetic core being sandwiched between the top and bottom lead frames. Ones of the leads of the top and bottom lead frames have a generally non-linear, stepped configuration such that the leads of the top lead frame couple adjacent leads of the bottom lead frame about the magnetic core to form the coil.