Abstract:
A semiconductor package is provided, including: a substrate; a first semiconductor element disposed on the substrate and having a first conductive pad grounded to the substrate; a conductive layer formed on the first semiconductor element and electrically connected to the substrate; a second semiconductor element disposed on the first semiconductor element through the conductive layer; and an encapsulant formed on the substrate and encapsulating the first and second semiconductor elements. Therefore, the first and second semiconductor elements are protected from electromagnetic interference (EMI) shielding with the conductive layer being connected to the grounding pad of the substrate. A fabrication method of the semiconductor package is also provided.
Abstract:
The present invention provides a semiconductor structure and a method of fabricating the same. The method includes: providing a chip having conductive pads, forming a metal layer on the conductive pads, forming a passivation layer on a portion of the metal layer, and forming conductive pillars on the metal layer. Since the metal layer is protected by the passivation layer, the undercut problem is solved, the supporting strength of the conductive pillars is increased, and the product reliability is improved.
Abstract:
The present invention provides a semiconductor structure and a method of fabricating the same. The method includes: providing a chip having conductive pads, forming a metal layer on the conductive pads, forming a passivation layer on a portion of the metal layer, and forming conductive pillars on the metal layer. Since the metal layer is protected by the passivation layer, the undercut problem is solved, the supporting strength of the conductive pillars is increased, and the product reliability is improved.
Abstract:
A package structure is disclosed, which includes a substrate having a body, a plurality of conductive pads formed on the body and a surface passivation layer formed on the body and having a plurality of openings for exposing the conductive pads; a plurality of conductive vias formed in the openings of the surface passivation layer and electrically connected to the conductive pads; a plurality of circuits formed on the surface passivation layer and electrically connected to the conductive vias, wherein the circuits have a plurality of electrical contacts; at least a pattern portion formed on the surface passivation layer and intersecting with the circuits; and a second passivation layer formed on the surface passivation layer, the circuits and the pattern portion d having a plurality of openings for exposing portions of the electrical contacts of the circuits, thereby strengthening the bonding between the circuits and the passivation layers.
Abstract:
A package structure is disclosed, which includes a substrate having a body, a plurality of conductive pads formed on the body and a surface passivation layer formed on the body and having a plurality of openings for exposing the conductive pads; a plurality of conductive vias formed in the openings of the surface passivation layer and electrically connected to the conductive pads; a plurality of circuits formed on the surface passivation layer and electrically connected to the conductive vias, wherein the circuits have, a plurality of electrical contacts; at least a pattern portion formed on the surface passivation layer and intersecting with the circuits; and a second passivation layer formed on the surface passivation layer, the circuits and the pattern portion d having a plurality of openings for exposing portions of the electrical contacts of the circuits, thereby strengthening the bonding between the circuits and the passivation layers.
Abstract:
A package structure is provided, including: a board having a plurality of conductive traces; a plurality of conductive pads formed on the board and each having a height greater than a height of each of the conductive traces; and an electronic component disposed on and electrically connected to the conductive pads via a plurality of conductive elements, wherein at least one of the conductive traces is positioned in proximity of at least one of the conductive pads. Therefore, the conductive elements are prevented from being in contact with the conductive traces, and the problem that the conductive pads and the conductive traces are shorted is solved. The present invention further provides a method for fabricating the packaging substrate.
Abstract:
A package substrate is provided, which includes a plurality of dielectric layers and a plurality of circuit layers alternately stacked with the dielectric layers. At least two of the circuit layers have a difference in thickness so as to prevent warpage of the substrate.
Abstract:
A semiconductor package is provided, including: a substrate; a first semiconductor element disposed on the substrate and having a first conductive pad grounded to the substrate; a conductive layer formed on the first semiconductor element and electrically connected to the substrate; a second semiconductor element disposed on the first semiconductor element through the conductive layer; and an encapsulant formed on the substrate and encapsulating the first and second semiconductor elements. Therefore, the first and second semiconductor elements are protected from electromagnetic interference (EMI) shielding with the conductive layer being connected to the grounding pad of the substrate. A fabrication method of the semiconductor package is also provided.
Abstract:
A semiconductor package is provided, which includes a carrier having a mounting area and at least a grounding pad; a substrate body having opposite first and second surfaces and a plurality of conductive vias each having a first end exposed from the first surface and a second end opposite to the first end, the substrate body being disposed on the mounting area of the carrier through the second surface thereof; a metal layer formed on the first surface of the substrate body and exposing the first ends of the conductive vias; a conductive body electrically connecting the metal layer and the grounding pad; and a semiconductor element disposed on the substrate body and electrically connected to the first ends of the conductive vias, thereby achieving an EMI shielding effect to prevent interference between electromagnetic waves or electrical signals of the substrate body and the semiconductor element.
Abstract:
A method of fabricating a semiconductor package is provided, including: disposing a plurality of semiconductor elements on a carrier through an adhesive layer in a manner that a portion of the carrier is exposed from the adhesive layer; forming an encapsulant to encapsulate the semiconductor elements; removing the adhesive layer and the carrier to expose the semiconductor elements; and forming a build-up structure on the semiconductor elements. Since the adhesive layer is divided into a plurality of separated portions that will not affect each other due to expansion or contraction when temperature changes, the present invention prevents positional deviations of the semiconductor elements during a molding process, thereby increasing the alignment accuracy.