Abstract:
This specification describes techniques for manufacturing an electronic system module. The module includes flexible multi-layer interconnection circuits with trace widths of 5 microns or less. A glass panel manufacturing facility, similar to those employed for making liquid crystal display, LCD, panels is used to fabricate the interconnection circuits. A polymer base layer is formed on a glass carrier with an intermediate release layer. Alternate layers of metal and dielectric are formed on the base layer, and patterned to create an array of multi-layer interconnection circuits on the glass panel. A thick layer of polymer is deposited on the interconnection circuit, and openings formed at input/output (I/O) pad locations. Solder paste is deposited in the openings to form wells filled with solder. After dicing the glass carrier to form separated interconnection circuits, IC chips are stud bumped and assembled using flip chip bonding, wherein the stud bumps on the components are inserted into corresponding wells on the interconnection circuits. The IC chips are tested and reworked to form tested circuit assemblies. Methods for connecting to testers and to other modules and electronic systems are described. Module packaging layers are provided for hermetic sealing and for electromagnetic shielding. A blade server embodiment is also described.
Abstract:
A structure and method for manufacturing multi-electrode capacitor within a PCB is used to form a multi-electrode capacitor with a plurality of metal laminates coupled each other and employing the characteristics of the edge-coupled effect therein. the present invention can provide efficient capacitance from the capacitor with the smallest area. The present invention is applied to promote the capability of noise-restraint of the capacitive substrate in a high-frequency/speed system, and further achieves the purpose of regular circuit design with the smallest area in the future development.
Abstract:
A card-type electronic device has a multilayer printed wiring board and a case which houses the multilayer printed wiring board. The case has an opening. The multilayer printed wiring board includes a plurality of insulating layers and a plurality of conductive layers, which are alternately stacked, and has a flat surface on one side thereof along a stacked direction. The flat surface is formed of one of the insulating layers, and at least a part of the flat surface is exposed to the outside of the case through the opening.
Abstract:
A substrate to which a laser technique is applied includes a signal layer, a micro via structure, and a differential signal pair. The micro via structure is divided into a first conductive column and a second conductive column after a laser-cutting step. The first conductive column includes a first flat conductive layer, and the second conductive column includes a second flat conductive layer. A first trace of the differential signal pair is parallel to and electrically connected to the first flat conductive layer. A second trace of the differential signal pair is parallel to and electrically connected to the second flat conductive layer. The distance between the first trace and the second trace is the same as the distance between the first flat conductive layer and the second flat conductive layer. The reflection of high-speed signals and the noise interferences can be reduced.
Abstract:
A multi-layer circuit board and a method for fabricating the same are proposed. A plurality of circuit board units are prepared and formed with patterned circuit layers thereon. At least one insulating layer is formed on each of the circuit board units. The insulating layer is patterned to form a plurality of opening or is thinned to expose contact pads of the circuit layers on the circuit board units. The circuit board units undergo surface activation and laminating processes in vacuum to form a multi-layer circuit board, wherein the circuit board units are laminated and electrically connected together by the exposed contact pads. This method reduces the time and cost for fabrication.
Abstract:
An embedded microelectronic capacitor incorporating at least one ground shielding layer is provided which includes an upper ground shielding layer that has an aperture therethrough; an electrode plate positioned spaced-apart from the upper ground shielding layer that has a via extending upwardly away from the electrode plate through the aperture in the upper ground shielding layer providing electrical communication to the electrode plate without shorting to the upper ground shielding layer; a middle ground shielding layer positioned in the same plane of the electrode plate, surrounding while spaced-apart from the electrode plate at a predetermined distance; a lower ground shielding layer positioned spaced-apart from the electrode plate in an opposing relationship to the upper ground shielding layer; and a dielectric material embedding the upper ground shielding layer; the middle ground shielding layer and the lower ground shielding layer.
Abstract:
An interconnect module for an integrated circuit chip incorporates a thin, high dielectric constant embedded capacitor structure to provide reduced power distribution impedance, and thereby promote higher frequency operation. The interconnect module is capable of reliably attaching an integrated circuit chip to a printed wiring board via solder ball connections, while providing reduced power distribution impedance of less than or equal to approximately 0.60 ohms at operating frequencies in excess of 1.0 gigahertz.
Abstract:
A conductive film has a plurality of clearances (openings) and a plurality of auxiliary clearances. The plurality of clearances and the plurality of auxiliary clearances are formed to have such numerical apertures and locations that generate no bias in the distribution of conductive film in consideration of the entire conductive film. The conductive film can disperse stress caused by thermal expansion etc., to ease by having the plurality of clearances and the plurality of auxiliary clearances. Accordingly, the conductive film is less prone to being peeled off the insulating film. Further, since the distribution of conductive film is substantially uniform as a whole, the transfer characteristics that are fixed by the distribution become substantially uniform as a whole.
Abstract:
A method for preparing thin integrated circuits having multiple circuit layers has the following acts of: forming a first circuit layer on a substrate; depositing at least one resin and copper layer on the first circuit layer; forming a second circuit layer on the at least one resin and copper layer; electrically connecting the first and second circuit layers; attaching electronic components to the first or second circuit layers; applying an encapsulant layer to protect the electronic components; and removing the substrate to expose the first circuit layer. By removing the substrate, the integrated circuit is much thinner.
Abstract:
Tails (20) projecting from an electrical component (12) that lies on a circuit board surface, are terminated to traces on a multi-layer circuit board (14) in a manner that minimizes the disadvantages of long through hole soldering and of surface mount techniques. A blind hole is drilled and plated in a first layer (31) that will become the topmost layer of the stack, to form a shallow well (70). The well is filled with a soldering composition (130). A tail (20) is projected downward into the soldering composition, and the soldering composition is heated to solder the tail to the hole plating.