Abstract:
There are disclosed a surface treatment device and a wire bonding device which are compact in size, have a high processing ability, are simple in construction, and achieve a low cost. The surface treatment device includes a base having a transfer path for transferring an object, a lid provided above the base for movement into and out of contact with an upper surface of the base, the lid contacting the base to form a sealed space on the upper surface of the base, an engagement and disengagement mechanism for moving the lid into and out of contact with the base, a transfer mechanism for feeding the object, disposed on the transfer path, into and out of a position beneath the lid when the lid is out of contact with the base, and a treatment portion for surface treating electrodes of the object disposed in the sealed space. A wire bonding mechanism is provided at a downstream portion of the transfer path.
Abstract:
Two substrates are produced each with a planar, mirror-image matrix of metal contacts in a surface wiring layer. The substrates are positioned with the matrices in parallel confrontation which defines pairs of confronting contacts. A metal ball is positioned between each pair of contacts with a respective volume of joining material between the ball and each of the two respective contacts. The volumes of joining material are simultaneously melted to allow surface tension to align the substrates and to accurately center the balls between each respective pairs of contacts in a plane defines by the matrix of balls.
Abstract:
An improved method for soldering a thermoelectric cooler between an electronic device and a heatsink. Thermoelectric coolers are assembled by soldering parts together using a first solder. The bottom surface of the thermoelectric cooler is first soldered to the heatsink using a second solder and then the top surface is soldered to the electronic device using a third solder preferably having the same melting point as the second solder, or having approximately the same melting point as the second solder. Reverse powering of the thermoelectric cooler assists the soldering of the top surface to the electronic device by heating the top surface to a temperature sufficient to melt the third solder while cooling the bottom surface of the thermoelectric cooler to a temperature lower than the melting point of the second solder. Since the second solder has a melting point chosen to be lower than the melting point of the first solder used to assemble the cooler and the third solder has preferably the same, or approximately the same melting point as the second solder, rather than a much lower melting point, the assembled electronic device may be operated at a higher temperature and tested at a higher thermal cycle.
Abstract:
A conductor pattern test apparatus comprises a DC voltage power source for applying a predetermined DC voltage to an end of one of a plurality of conductor patterns arranged in parallel with each other, a current measurement circuit for measuring a current flowing to another conductor pattern adjacent to the one of the conductor patterns via the end by the DC voltage power source to the end, and a short-circuit position calculation circuit for calculating a resistance value from the end to a short-circuited part of the two conductor patterns adjacent to each other, based on the current value measured by the current measurement circuit and the voltage value applied by the DC power source, and locating a position of the short-circuited part based on the calculated resistance value and a resistance value of a conductor pattern having no short-circuit. A disconnection position calculator calculates a capacitance value from voltage values.
Abstract:
A pellet conveying device used with a bonding machine for, for example, semiconductor devices, including a conveying arm that has a collet for holding pellets. The conveying arm can move vertically and pivot horizontally by two different driving sources so that the collet can be moved between predetermined two positions such as a pellet pick-up position and a pellet releasing position.
Abstract:
The present invention provides a method for forming a solder bump (24) on a substrate (20). The substrate (20) includes a bond pad (18) having a faying surface (19) composed of solder-wettable metal. The method includes coating the faying surface (19) with a plate (16) formed of a first metal having a first melting temperature, and projecting a discrete microdroplet (14) onto the plate (16). The microdroplet (14) is formed of a molten second metal and has a second melting temperature greater than the first melting temperature. The microdroplet (14) fuses to the plate (16) to form the solder bump (24).
Abstract:
A dual air knife assembly for removing excess solder and leveling any remaining solder on a passing circuit board with a gas from a gas source in accordance with the present invention includes a first and second air knife. The first air knife has a first passage with a first inlet adapted to connect to the gas source and a first outlet adapted to be positioned adjacent the passing circuit board. The second air knife has a second passage with a second inlet connected to the gas source and a second outlet adapted to be positioned adjacent the passing circuit board. The first air knife is adapted to be positioned substantially perpendicular to the circuit board and the second air knife is adapted to be positioned at an angle less than 90 degrees and preferably between 20 and 60 degrees to the circuit board. The dual air knife assembly may include a spacer which separates the a first and second air knife and is recessed from the outlets of the a first and second air knife to create an expansion chamber. The distance the first and second outlets are from the passing circuit board and the temperature and pressure of the gas exiting from the a first and second air knife should all be substantially the same. Typically, the dual air knife assembly is used in a soldering system which includes a conveyor, a flux station, and a solder station. The dual air knife assembly is used in a process referred to as "hot air solder levelling" to remove excess solder and more evenly distribute any remaining solder. A pair of dual air knife assemblies may be used in another soldering system where excess solder is removed and any remaining solder is levelled on both sides of a circuit board.
Abstract:
Apparatus for forming welded joints on superconducting foils to form long lengths of foil for use in superconducting magnet tapes including fixturing for controlling the accurate positioning of sheared foils and control of the overlap to be welded.
Abstract:
An artificial neural network is trained to recognize inputted thermal and physical features of a printed circuit board, for providing settings for a reflow oven for obtaining acceptable soldering of the printed circuit board.
Abstract:
In order to remove oxide film and contamination film on members to be bonded by soldering and solder material therefor corresponding to variation of thickness thereof by sputter-etching in a fluxless bonding method and apparatus therefor, substance emitted from the solder material under sputter-etching using atom or ion is detected and determined whether it is from the solder material or from the oxide film thereon. The sputter-etching is controlled on the basis of the determination to remove the oxide film. Then, the members are aligned in oxidizing atmosphere and soldered in non-oxidizing atmosphere.