摘要:
A plasma processing apparatus includes: a reaction chamber; a stage which is disposed inside the reaction chamber and on which a conveyance carrier is mountable; an electrostatic chuck mechanism including an electrode portion that is disposed inside the stage; a support portion which supports the conveyance carrier between a stage-mounted position on the stage and a transfer position that is distant from the stage upward; and an elevation mechanism which elevates and lowers the support portion relative to the stage. In a case in which the conveyance carrier is mounted on the stage by lowering the support portion, the electrostatic chuck mechanism starts applying a voltage to the electrode portion before contact of an outer circumferential portion of a holding sheet which holds the conveyance carrier to the stage.
摘要:
A substrate processing system that includes a substrate processing chamber having one or more sidewalls that at least partially define a substrate processing region and extend away from a bottom wall of the substrate processing chamber at an obtuse angle; a source material holder configured to hold a source material within the substrate processing region; a plasma gun operatively coupled to introduce a plasma beam into the substrate processing region; one or more magnets operatively arranged to generate a magnetic field that guides the plasma beam to the source material holder; and a substrate carrier configured to hold one or more substrates within the substrate processing region.
摘要:
Provided is a preliminary treatment method for a workpiece capable of shortening a cycle time by preventing a nodule from being formed on a carbon film. The preliminary treatment method for the workpiece is performed before a carbon film is formed on a surface of a workpiece W. A bias voltage is applied to the workpiece W disposed in a treatment space S maintained at a predetermined vacuum degree while an oxygen gas is supplied to the treatment space S before a material gas is supplied to the treatment space S, oxygen plasma is generated along the surface of the workpiece W, and oxygen, hydrogen, or water stuck to the surface of the workpiece W is removed.
摘要:
A method includes forming a coating layer in a dry etching chamber, placing a wafer into the dry etching chamber, etching a metal-containing layer of the wafer, and moving the wafer out of the dry etching chamber. After the wafer is moved out of the dry etching chamber, the coating layer is removed.
摘要:
An operation method of a plasma processing device, includes performing a plasma process on a workpiece by supplying first high frequency power of a predetermined output to an electrode and generating plasma; and performing a charge storage process before the plasma process when a time interval from an end of a previous operation of the plasma processing device exceeds a predetermined interval, the charge storage process including supplying, to the electrode, second high frequency power of a lower output than the predetermined output.
摘要:
The present disclosure disclosed a dry etching device, comprising an etching cavity; a gas extraction system arranged on the bottom of the etching cavity, wherein, the system includes a gas passage, a gas extractor; controllable valves, each mounted on a respective gas inlet. The present disclosure disclosed a dry etching method, including the steps of: placing a workpiece to be etched on a base platform in an etching cavity; selecting a gas extraction mode from a group consisting of a circulatory working mode and a non-circulatory working mode according to procedures to be performed; performing a dry etching procedure while extracting gas under the circulatory mode or non-circulatory mode. The device can improve the uniformity of the dry etching process and the substrate to be manufactured, thus increase the quality of the product. In addition, the restriction to the design of the product due to the considerations of the uniformity can be reduced, and thus enlarge the room for designing the products.
摘要:
The invention relates to the deposition of optical precision films with high uniformity, precision, particle freedom and low absorption on the substrate. For this purpose, a method and a device are proposed. The approach is the use of target materials and also possibly of surfaces in the sputtering field. Particularly high uniformity and also particularly low residual absorption are achieved with these materials. The invention is suitable for the production of optical thin-film filters, as are used for example in laser material machining, laser components, optical sensors for measuring technology, or in medical diagnostics.
摘要:
Methods for controlled isotropic etching of layers of silicon oxide and germanium oxide with atomic scale fidelity are provided. The methods make use of NO activation of an oxide surface. Once activated, a fluorine-containing gas or vapor etches the activated surface. Etching is self-limiting as once the activated surface is removed, etching stops since the fluorine species does not spontaneously react with the un-activated oxide surface. These methods may be used in interconnect pre-clean applications, gate dielectric processing, manufacturing of memory devices, or any other applications where accurate removal of one or multiple atomic layers of material is desired.
摘要:
A method of using a multi-layer biocidal structure includes providing a multi-layer biocidal structure that includes a support and a structured bi-layer on or over the support. The structured bi-layer includes a first cured layer including dispersed multiple biocidal particles on or over the support and a second cured layer on or over the first cured layer on a side of the first cured layer opposite the support. The multiple biocidal particles are dispersed within only the first curable layer. The structured bi-layer has at least one depth greater than the thickness of the second layer. The multi-layer biocidal structure is located on a surface.
摘要:
A method of manufacturing a semiconductor device, includes: supplying a first precursor and a first nitriding agent onto a substrate having a surface formed thereon with an oxygen-containing film in order to form an initial film on the oxygen-containing film; modifying the initial film into a first nitride film by nitriding the initial film with plasma; and supplying a second precursor and a second nitriding agent onto the substrate in order to form a second nitride film on the first nitride film.