摘要:
At least one electric component, such as a power semiconductor component, has at least a two-phase cooling device having at least one evaporator. The evaporator has a liquefier with a structured liquefier surface for evaporating a cooling fluid, formed by an electric connecting line making electrical contact with an electric contact face of the component. The connecting line cools the power semiconductor component and a module equipped therewith. Isothermal cooling with a low thermal loading of the power semiconductor component or of the module is possible by virtue of the two-phase cooling device acting as an evaporating bath cooling system. The device is applied in the planar contact-making technology with a large surface by providing an electric component with an electric contact face and producing the electric connecting line to the evaporator surface on the contact face of the component.
摘要:
The invention relates to a power module comprising a substrate (2), whose surfaces are provided with at least one electrically conductive layer (4, 6), at least one active semiconductor chip (8), which is electrically connected to an electrically conductive layer (6), a film (12) consisting of an electrically conductive material, which is in close contact with the surfaces of the semiconductor chips (8) of the electrically conductive layer (6) and the substrate (2) and is provided with planar printed conductors (16). According to the invention: the module is equipped with a second film (18), which is in close contact with the surfaces of the printed conductors (16) and the first film (12); a passive semiconductor chip (22) is applied to said second film (18), above the active semiconductor chip (8) and is electrically connected to the planar printed conductor (16) lying below by means of a window (14) that is configured in the second film (18); the module is equipped with a third film (24), which is in close contact with the surfaces of the passive semiconductor chip (22) and the second film (18) and said third film (24) is provided with a planar printed conductor (28), which is conductively connected to the conductive layer (6) lying below the active semiconductor chip (8). The invention thus provides a compact power module that can comprise complex topologies.
摘要:
A semiconductor chip packaging structure is fabricated by using a dielectric film with two surfaces, and a power semiconductor chip with an active surface having contact pads. An adhesive layer is used to connect the first surface of the dielectric film and the active surface of the power semiconductor chip. A patterned electrically conductive layer is formed adjacent to the second surface of the film, extending through holes in the film to the contact pads.
摘要:
A film, based on polyimide or epoxy, is laminated onto a surface of a substrate under a vacuum, so that the film closely covers the surface and adheres thereto. Contact surfaces to be formed on the surface are uncovered by opening windows in the film. A contact is established in a plane manner between each uncovered contact surface and a layer of metal. This establishes a large-surface contact providing high current density for power semiconductor chips.
摘要:
An apparatus 1 for fabricating a component-embedded board according to the present invention comprises: a detecting unit 11 for detecting, before the board 21 is covered with an insulating layer 23, the actual position of an electronic component 22 formed on the surface of the board 21; a holding unit 12 for calculating a displacement between the design position of the electronic component 22 and the actual position of the electronic component 22 on the surface of the board 21, and for holding the displacement as displacement data; and a correcting unit 13 for correcting, based on the displacement data, design data to be used for processing the board 21 after the board 21 is covered with the insulating layer 23.
摘要:
A self-supporting contacting structure is directly produced on a component that does not have a housing by applying a layer made of non conducting material and a layer made of an electrically conductive material to the component and to a support and by subsequently removing these layers from said support.
摘要:
A method for producing a dielectric layer extending between two or more elements of an electronic component includes arranging a free-standing dielectric layer above the elements and a deformable support layer below the elements. The free-standing dielectric layer is laminated onto at least a portion of the first surface of the first element and onto at least a portion of the first surface of the second element such that a portion of the dielectric layer extends between the first surface of the first element and the first surface of the second element.
摘要:
A layer of electrically insulating material is applied to a substrate and a component located thereon, in such a way that said layer follows the surface contours.
摘要:
A semiconductor module (1) has components (6) for microwave engineering in a plastic casing (7). The semiconductor module (1) has a principal surface (8) with an upper side (9) of a plastic package molding compound (10) and at least one active upper side (11) of a semiconductor chip (12). Disposed on the principal surface (8) is a multilayered conductor track structure (13) which alternately comprises structured metal layers (14, 15) and structured insulation layers (16, 17), where at least one of the insulation layers (16, 17) and/or the plastic package molding compound (10) has at least one microwave insulation region.
摘要:
A semiconductor device (1) of the present invention includes a semiconductor element (103) including electrode parts (104), and a wiring substrate (108) including an insulation layer (101), electrode-part-connection electrodes (102) provided in the insulation layer (101), and external electrodes (107) that is provided in the insulation layer (101) and that is connected electrically with the electrode-part-connection electrodes (102), in which the electrode parts (104) and the electrode-part-connection electrodes (102) are connected electrically with each other. The insulation layer (101) has an elastic modulus measured according to JIS K6911 of not less than 0.1 GP a and not more than 5 GPa, and the electrodes (104) and the electrode-part-connection electrodes (102) are connected by metal joint.