Floating body germanium phototransistor
    71.
    发明申请
    Floating body germanium phototransistor 有权
    浮体锗光电晶体管

    公开(公告)号:US20070001163A1

    公开(公告)日:2007-01-04

    申请号:US11174035

    申请日:2005-07-01

    CPC classification number: H01L31/1136 H01L31/028 H01L31/1808 Y02E10/547

    Abstract: A floating body germanium (Ge) phototransistor and associated fabrication process are presented. The method includes: providing a silicon (Si) substrate; selectively forming an insulator layer overlying the Si substrate; forming an epitaxial Ge layer overlying the insulator layer using a liquid phase epitaxy (LPE) process; forming a channel region in the Ge layer; forming a gate dielectric, gate electrode, and gate spacers overlying the channel region; and, forming source/drain regions in the Ge layer. The LPE process involves encapsulating the Ge with materials having a melting temperature greater than a first temperature, and melting the Ge using a temperature lower than the first temperature. The LPE process includes: forming a dielectric layer overlying deposited Ge; melting the Ge; and, in response to cooling the Ge, laterally propagating an epitaxial growth front into the Ge from an underlying Si substrate surface.

    Abstract translation: 提出了一种浮体锗(Ge)光电晶体管及其制造工艺。 该方法包括:提供硅(Si)衬底; 选择性地形成覆盖Si衬底的绝缘体层; 使用液相外延(LPE)工艺形成覆盖绝缘体层的外延Ge层; 在Ge层中形成沟道区; 形成覆盖所述沟道区的栅极电介质,栅电极和栅极间隔; 并且在Ge层中形成源/漏区。 LPE工艺包括用具有大于第一温度的熔化温度的材料包封Ge,并且使用低于第一温度的温度来熔化Ge。 LPE工艺包括:形成覆盖沉积Ge的介电层; 融化Ge; 并且响应于冷却Ge,将外延生长前沿从下面的Si衬底表面横向传播到Ge中。

    Semiconductor Featuring Ridged Architecture
    80.
    发明公开

    公开(公告)号:US20240014262A1

    公开(公告)日:2024-01-11

    申请号:US17803424

    申请日:2022-07-05

    Abstract: A semiconductor, such as crystallized silicon or germanium, features top-mounted ridges. Circuits are capable of being integrated onto the ridges using modified photolithographic processes. The ridged architecture increases the usable surface area per given footprint of semiconductors. Specifically, if the preferred embodiment is adopted, the ridges increase relative surface area by 41.42%. Such an increase in surface area has numerous advantages. One advantage is that microchip footprints can be 29.29% smaller, allowing 1.41 times more microchips to be produced per wafer. Another advantage is that solar panels can contain 1.41 times more electron-shuttling junctions, thereby increasing overall sunlight harnessing, electrical conversion, and panel efficiency by 41.42%.

Patent Agency Ranking