摘要:
Provided is a semiconductor chip including a back side insulation structure. The semiconductor chip may include a semiconductor layer including an active surface and an inactive surface facing each other; the insulating layer includes a first surface adjacent to the inactive surface and a second surface facing the first surface. The insulating layer is disposed on the inactive surface of the semiconductor layer. A penetrating electrode fills a hole penetrating the semiconductor layer and the insulating layer. The through electrode comprises a protrusive portion protruding from the second surface of the insulating layer.
摘要:
Provided is a semiconductor device. The semiconductor device may include a substrate and a stacked insulation layer on a sidewall of an opening which penetrates the substrate. The stacked insulation layer can include at least one first insulation layer and at least one second insulation layer whose dielectric constant is different than that of the first insulation layer. One insulation layer may be a polymer and one insulation layer may be a silicon based insulation layer. The insulation layers may be uniform in thickness or may vary as a distance from the substrate changes.
摘要:
A microelectronic device includes a substrate having a trench extending therethrough between an active surface thereof and an inactive surface thereof opposite the active surface, a conductive via electrode extending through the substrate between sidewalls of the trench, and an insulating layer extending along the inactive surface of the substrate outside the trench and extending at least partially into the trench. The insulating layer defines a gap region in the trench that separates the substrate and the via electrode. Related devices and methods of fabrication are also discussed.
摘要:
In one embodiment, a semiconductor device includes a semiconductor substrate having a first surface, and a second surface opposite to the first surface. The second surface defines a redistribution trench. The substrate has a via hole extending therethrough. The semiconductor device also includes a through via disposed in the via hole. The through via may include a via hole insulating layer, a barrier layer, sequentially formed on an inner wall of the via hole. The through via may further include a conductive connector adjacent the barrier layer. The semiconductor device additionally includes an insulation layer pattern formed on the second surface of the substrate. The insulation layer pattern defines an opening that exposes a region of a top surface of the through via. The semiconductor devices includes a redistribution layer disposed in the trench and electrically connected to the through via. The insulation layer pattern overlaps a region of the conductive connector.
摘要:
Provided are a method of forming a metal layer wiring structure on the backside of a wafer, a metal layer wiring structure formed using the method, a method of stacking a chip package, and a chip package stack structure formed using the method. The method of stacking a chip package includes: forming recess patterns on a backside of wafers; forming a passivation layer on the backside of the wafers except for an area corresponding to a through electrode; forming a metal layer on the passivation layer; planarizing the metal layers to expose only the recess patterns; forming a lower insulating layer on the planarized metal layers except for an area corresponding to a contact portion with another wafer; forming an adhesive layer on the lower insulating layer of each of the wafers; and adhering the wafers to one another, wherein the recess patterns are formed using a laser.
摘要:
A touch panel device in which a support portion is provided to include an actuator for generating vibration giving an excellent sense of touch without the need for a separate mounting space. To this end, the touch panel device having a front cover portion, a touch sensor unit divided into an upper transparent electrode layer and a lower transparent electrode layer, and a substrate provided under the touch sensor portion includes an actuator for delivering vibration to the front cover portion, a reinforcing portion having the actuator attached thereto to attach the actuator to the touch sensor unit, and a support portion formed on the substrate to provide an opening in a first side thereof and a closed second side, such that the actuator is inserted into and coupled to the opening and the support portion supports the actuator to deliver the vibration of the actuator to the front cover portion.
摘要:
A semiconductor device having a chip stack and an interconnection terminal is provided. The chip stack includes a first semiconductor chip, a second semiconductor chip and a third semiconductor chip stacked on each other. The interconnection terminal is electrically coupled to the chip stack. The first semiconductor chip includes a first front surface and a first backside surface. The second semiconductor chip includes a second front surface, a second backside surface, a second circuit layer and a through-electrode which is electrically coupled to the second circuit layer and penetrates the second semiconductor chip. The third semiconductor chip includes a third front surface, a third backside surface opposite to the third front surface and a third circuit layer adjacent to the third front surface. The first front surface and the second front surface face each other. The third front surface and the second backside surface face each other.
摘要:
In one embodiment, a semiconductor device includes a semiconductor substrate having a first surface, and a second surface opposite to the first surface. The second surface defines a redistribution trench. The substrate has a via hole extending therethrough. The semiconductor device also includes a through via disposed in the via hole. The through via may include a via hole insulating layer, a barrier layer, sequentially formed on an inner wall of the via hole. The through via may further include a conductive connector adjacent the barrier layer. The semiconductor device additionally includes an insulation layer pattern formed on the second surface of the substrate. The insulation layer pattern defines an opening that exposes a region of a top surface of the through via. The semiconductor devices includes a redistribution layer disposed in the trench and electrically connected to the through via. The insulation layer pattern overlaps a region of the conductive connector.
摘要:
Provided is a satellite broadcasting terminals. The satellite broadcasting terminal includes: a first antenna receiving a radio signal of a first band or a second band; a second antenna receiving a radio signal of a third band; a first stream demodulating unit demodulating a first stream signal received through the first band; a second stream demodulating unit demodulating a second stream signal received through the second band; a playing unit playing the demodulated first or second stream signal; and a gap filler receiving unit selectively providing the first stream signal to the first stream demodulating unit in response to a radio signal intensity of the third band, the first stream signal being received through the third band.
摘要:
Provided are a wafer level chip scale package in which a redistribution process is applied at a wafer level, a manufacturing method thereof, and a semiconductor chip module including the wafer level chip scale package. The wafer level chip scale package includes a semiconductor chip having a bonding pad, a first insulating layer disposed on the semiconductor chip so as to expose the bonding pad, a redistribution line disposed on the exposed bonding pad and the first insulating layer, a sacrificial layer disposed below a redistribution pad of the redistribution line, a second insulating layer disposed on the redistribution line so as to expose the redistribution pad and including a crack inducement hole disposed beside the sacrificial layer, and an external connection terminal attached to the redistribution pad.