摘要:
A semiconductor chip production method including the steps of: forming a front side recess in a semiconductor substrate; depositing a metal material in the front side recess to form a front side electrode electrically connected to a functional device formed on the front surface; removing a rear surface portion of the semiconductor substrate to reduce the thickness of the semiconductor substrate to a thickness greater than the depth of the front side recess; forming a rear side recess communicating with the front side recess in the rear surface of the semiconductor substrate after the thickness reducing step; and depositing a metal material in the rear side recess to form a rear side electrode electrically connected to the front side electrode for formation of a through-electrode.
摘要:
A semiconductor chip production method including the steps of: forming a front side recess in a semiconductor substrate; depositing a metal material in the front side recess to form a front side electrode electrically connected to a functional device formed on the front surface; removing a rear surface portion of the semiconductor substrate to reduce the thickness of the semiconductor substrate to a thickness greater than the depth of the front side recess; forming a rear side recess communicating with the front side recess in the rear surface of the semiconductor substrate after the thickness reducing step; and depositing a metal material in the rear side recess to form a rear side electrode electrically connected to the front side electrode for formation of a through-electrode.
摘要:
A semiconductor chip production method including the steps of: forming a front side recess in a semiconductor substrate; depositing a metal material in the front side recess to form a front side electrode electrically connected to a functional device formed on the front surface; removing a rear surface portion of the semiconductor substrate to reduce the thickness of the semiconductor substrate to a thickness greater than the depth of the front side recess; forming a rear side recess communicating with the front side recess in the rear surface of the semiconductor substrate after the thickness reducing step; and depositing a metal material in the rear side recess to form a rear side electrode electrically connected to the front side electrode for formation of a through-electrode.
摘要:
A semiconductor chip production method including the steps of: forming a front side recess in a semiconductor substrate; depositing a metal material in the front side recess to form a front side electrode electrically connected to a functional device formed on the front surface; removing a rear surface portion of the semiconductor substrate to reduce the thickness of the semiconductor substrate to a thickness greater than the depth of the front side recess; forming a rear side recess communicating with the front side recess in the rear surface of the semiconductor substrate after the thickness reducing step; and depositing a metal material in the rear side recess to form a rear side electrode electrically connected to the front side electrode for formation of a through-electrode.
摘要:
In a state where an adhesive tape is attached onto a main surface of a semiconductor wafer, a trench is formed in a rear surface of the semiconductor wafer. For forming the trench in the rear surface of the semiconductor wafer, after coating a resist film on the rear surface of the semiconductor wafer, the resist film is patterned by using the photolithography technology. The patterning of the resist film is performed so as not to leave the resist film in the region where the trench is to be formed. Then, the trench is formed in a predetermined region of the semiconductor wafer by the dry etching technology using the patterned resist film as a mask. Specifically, the trench is formed in the region near the dicing line.
摘要:
In a semiconductor device in which a plurality of semiconductor chips are stacked, performance is enhanced without deteriorating productivity. The semiconductor device has a plurality of elements, an interlayer insulating film, a pad, and a bump electrode electrically connected with the pad sequentially formed on a main surface of a silicon substrate and has a back-surface electrode formed on a back surface of the silicon substrate and electrically connected with the bump electrode. The bump electrode has a protruding portion penetrating through the pad and protruding toward the silicon substrate side. The back-surface electrode is formed so as to reach the protruding portion of the bump electrode from the back surface side of the silicon substrate toward the main surface side and to cover the inside of a back-surface-electrode hole portion which does not reach the pad, so that the back-surface electrode is electrically connected with the bump electrode.
摘要:
In a semiconductor device having a Low-k film as an interlayer insulator, peeling of the interlayer insulator in a thermal cycle test is prevented, thereby providing a highly reliable semiconductor device. In a semiconductor device having a structure in which interlayer insulators in which buried wires each having a main electric conductive layer made of copper are formed and cap insulators of the buried wires are stacked, the cap insulator having a relatively high Young's modulus and contacting by its upper surface with the interlayer insulator made of a Low-k film having a relatively low Young's modulus is formed so as not to be provided in an edge portion of the semiconductor device.
摘要:
A through silicon via reaching a pad from a second surface of a semiconductor substrate is formed. A penetration space in the through silicon via is formed of a first hole and a second hole with a diameter smaller than that of the first hole. The first hole is formed from the second surface of the semiconductor substrate to the middle of the interlayer insulating film. Further, the second hole reaching the pad from the bottom of the first hole is formed. Then, the interlayer insulating film formed on the first surface of the semiconductor substrate has a step shape reflecting a step difference between the bottom surface of the first hole and the first surface of the semiconductor substrate. More specifically, the thickness of the interlayer insulating film between the bottom surface of the first hole and the pad is smaller than that in other portions.
摘要:
An object of the present invention is to establish, for an LSI having a stacked interconnection structure of Cu interconnect/Low-k material, a narrow pitch wire bonding technique enabling a reduction in damage to a bonding pad and application similar to the conventional LSI of an aluminum interconnection. In a semiconductor device having a multilayer interconnection made of a Cu interconnect/Low-k dielectric material, the above-described object can be attained by a bonding pad structure in which all the wiring layers up to the uppermost cap interconnect are formed of a Cu wiring layer and a bonding pad portion formed of a Cu layer is equipped with a refractory intermediate metal layer such as Ti (titanium) filmor (tungsten) film on the Cu layer and an aluminum alloy layer on the intermediate metal layer.
摘要:
Heating elements different in heat generating timing are laminated in a stacked state, and the heating element close to a wiring substrate is allowed to function as a heat diffusion plate for another heating element.