Abstract:
A semiconductor device includes a first device including a first substrate and a first external connection terminal for connecting outside the first device; a second device stacked on the first device, the second device including a second substrate and a second external connection terminal for connecting outside the second device; an adhesive pattern disposed between the first device and second device, the adhesive pattern disposed in locations other than locations where the first external connection terminal and second external connection terminal are disposed, and the adhesive pattern causing the first device and second device, when stacked, to be spaced apart by a predetermined distance; and a plated layer disposed between and electrically and physically connecting the first external connection terminal and the second external connection terminal.
Abstract:
A semiconductor apparatus having a through electrode, a semiconductor package, and a method of manufacturing the semiconductor package are provided. The method of includes preparing a substrate including a buried via, the buried via having a first surface at a first end, and the buried via extending from a first substrate surface of the substrate into the substrate; planarizing a second substrate surface of the substrate opposite the first substrate surface to form a through via by exposing a second via surface at a second end of the buried via opposite the first end; forming a conductive capping layer on the exposed second via surface of the through via; and recessing the second substrate surface so that at least a first portion of the through via extends beyond the second substrate surface.
Abstract:
A semiconductor apparatus having a through electrode, a semiconductor package, and a method of manufacturing the semiconductor package are provided. The method of includes preparing a substrate including a buried via, the buried via having a first surface at a first end, and the buried via extending from a first substrate surface of the substrate into the substrate; planarizing a second substrate surface of the substrate opposite the first substrate surface to form a through via by exposing a second via surface at a second end of the buried via opposite the first end; forming a conductive capping layer on the exposed second via surface of the through via; and recessing the second substrate surface so that at least a first portion of the through via extends beyond the second substrate surface.
Abstract:
A reinforced solder bump connector structure is formed between a contact pad arranged on a semiconductor chip and a ball pad arranged on a mounting substrate. The semiconductor chip includes at least one reinforcing protrusion extending upwardly from a surface of an intermediate layer. The mounting substrate includes at least one reinforcing protrusion extending upwardly from a ball pad, the protrusions from both the chip and the substrate being embedded within the solder bump connector. In some configurations, the reinforcing protrusion from the contact pad and the ball pad are sized and arranged to have overlapping under portions. These overlapping portions may assume a wide variety of configurations that allow the protrusions to overlap without contacting each other including pin arrays and combinations of surrounding and surrounded elements. In each configuration, the reinforcing protrusions will tend to suppress crack formation and/or crack propagation thereby improving reliability.
Abstract:
A method of forming a bump may involve providing a seed layer on a contact pad of a wafer. A shielding layer and a photosensitive mask layer may be formed on the seed layer. The photosensitive mask layer may be exposed and developed to form a mask pattern. An exposed portion of the shielding layer may be removed. The bump may be formed by plating the exposed seed layer.
Abstract:
A reinforced solder bump connector structure is formed between a contact pad arranged on a semiconductor chip and a ball pad arranged on a mounting substrate. The semiconductor chip includes at least one reinforcing protrusion extending upwardly from a surface of an intermediate layer. The mounting substrate includes at least one reinforcing protrusion extending upwardly from a ball pad, the protrusions from both the chip and the substrate being embedded within the solder bump connector. In some configurations, the reinforcing protrusions from the contact pad and the ball pad are sized and arranged to have overlapping upper portions. These overlapping portions may assume a wide variety of configurations that allow the protrusions to overlap without contacting each other including pin arrays and combinations of surrounding and surrounded elements. In each configuration, the reinforcing protrusions will tend to suppress crack formation and/or crack propagation thereby improving reliability.
Abstract:
A reinforced solder bump connector structure is formed between a contact pad arranged on a semiconductor chip and a ball pad arranged on a mounting substrate. The semiconductor chip includes at least one reinforcing protrusion extending upwardly from a surface of an intermediate layer. The mounting substrate includes at least one reinforcing protrusion extending upwardly from a ball pad, the protrusions from both the chip and the substrate being embedded within the solder bump connector. In some configurations, the reinforcing protrusions from the contact pad and the ball pad are sized and arranged to have overlapping upper portions. These overlapping portions may assume a wide variety of configurations that allow the protrusions to overlap without contacting each other including pin arrays and combinations of surrounding and surrounded elements. In each configuration, the reinforcing protrusions will tend to suppress crack formation and/or crack propagation thereby improving reliability.