Abstract:
A semiconductor device includes a first device including a first substrate and a first external connection terminal for connecting outside the first device; a second device stacked on the first device, the second device including a second substrate and a second external connection terminal for connecting outside the second device; an adhesive pattern disposed between the first device and second device, the adhesive pattern disposed in locations other than locations where the first external connection terminal and second external connection terminal are disposed, and the adhesive pattern causing the first device and second device, when stacked, to be spaced apart by a predetermined distance; and a plated layer disposed between and electrically and physically connecting the first external connection terminal and the second external connection terminal.
Abstract:
A semiconductor apparatus having a through electrode, a semiconductor package, and a method of manufacturing the semiconductor package are provided. The method of includes preparing a substrate including a buried via, the buried via having a first surface at a first end, and the buried via extending from a first substrate surface of the substrate into the substrate; planarizing a second substrate surface of the substrate opposite the first substrate surface to form a through via by exposing a second via surface at a second end of the buried via opposite the first end; forming a conductive capping layer on the exposed second via surface of the through via; and recessing the second substrate surface so that at least a first portion of the through via extends beyond the second substrate surface.
Abstract:
A semiconductor apparatus having a through electrode, a semiconductor package, and a method of manufacturing the semiconductor package are provided. The method of includes preparing a substrate including a buried via, the buried via having a first surface at a first end, and the buried via extending from a first substrate surface of the substrate into the substrate; planarizing a second substrate surface of the substrate opposite the first substrate surface to form a through via by exposing a second via surface at a second end of the buried via opposite the first end; forming a conductive capping layer on the exposed second via surface of the through via; and recessing the second substrate surface so that at least a first portion of the through via extends beyond the second substrate surface.
Abstract:
A method of manufacturing a chip-stacked semiconductor package, the method including preparing a base wafer including a plurality of first chips each having a through-silicon via (TSV); bonding the base wafer including the plurality of first chips to a supporting carrier; preparing a plurality of second chips; forming stacked chips by bonding the plurality of second chips to the plurality of first chips; sealing the stacked chips with a sealing portion; and separating the stacked chips from each other.
Abstract:
A method of forming a semiconductor package includes attaching a semiconductor substrate on a support substrate, wherein the semiconductor substrate includes a plurality of first semiconductor chips and a chip cutting region that separates respective ones of the semiconductor chips. A first cutting groove is formed that has a first kerf width between first and second ones of the plurality of first semiconductor chips. A plurality of second semiconductor chips is attached to the plurality of first semiconductor chips. A molding layer is formed so as to fill the first cutting groove and a second cutting groove having a second kerf width that is less than the first kerf width is formed in the molding layer so as to form individual molding layers covering one of the plurality of first semiconductor chips and one of the plurality of second semiconductor chips.
Abstract:
A method of molding a semiconductor package includes coating liquid molding resin or disposing solid molding resin on a top surface of a semiconductor chip arranged on a substrate. The solid molding resin may include powdered molding resin or sheet-type molding resin. In a case where liquid molding resin is coated on the top surface of the semiconductor chip, the substrate is mounted between a lower molding and an upper molding, and then melted molding resin is filled in a space between the lower molding and the upper molding. In a case where the solid molding resin is disposed on the top surface of the semiconductor chip, the substrate is mounted on a lower mold and then the solid molding resin is heated and melts into liquid molding resin having flowability. An upper mold is mounted on the lower mold, and melted molding resin is filled in a space between the lower molding and the upper molding.
Abstract:
A printed circuit board and method thereof and a solder ball land and method thereof. The example printed circuit board (PCB) may include a first solder ball land having a first surface treatment portion configured for a first type of resistance and a second solder ball land having a second surface treatment portion configured for a second type of resistance. The example solder ball land may include a first surface treatment portion configured for a first type of resistance and a second surface treatment portion configured for a second type of resistance. A first example method may include first treating a first surface of a first solder ball land to increase a first type of resistance and second treating a second surface of a second solder ball land to increase a second type of resistance other than the first type of resistance. A second example method may include first treating a solder ball land to increase a first type of resistance and second treating the solder ball land to increase a second type of resistance other than the first type of resistance.
Abstract:
A printed circuit board and method thereof and a solder ball land and method thereof. The example printed circuit board (PCB) may include a first solder ball land having a first surface treatment portion configured for a first type of resistance and a second solder ball land having a second surface treatment portion configured for a second type of resistance. The example solder ball land may include a first surface treatment portion configured for a first type of resistance and a second surface treatment portion configured for a second type of resistance. A first example method may include first treating a first surface of a first solder ball land to increase a first type of resistance and second treating a second surface of a second solder ball land to increase a second type of resistance other than the first type of resistance. A second example method may include first treating a solder ball land to increase a first type of resistance and second treating the solder ball land to increase a second type of resistance other than the first type of resistance.
Abstract:
A method of forming a semiconductor package having a large capacity and a reduced or minimized volume includes: attaching a semiconductor substrate on a support substrate using an adhesive layer, wherein the semiconductor substrate includes a plurality of first semiconductor chips and a chip cutting region, wherein first and second ones of the plurality of first semiconductor chips are separated each other by the chip cutting region, and the semiconductor substrate includes a first surface on which an active area is formed and a second surface opposite to the first surface; forming a first cutting groove having a first kerf width, between the first and second ones of the plurality of first semiconductor chips, so that the semiconductor substrate is separated into a plurality of first semiconductor chips; attaching a plurality of second semiconductor chips corresponding to the first semiconductor chips, respectively, to the plurality of first semiconductor chips; forming a molding layer so as to fill the first cutting groove; and forming a second cutting groove having a second kerf width that is less than the first kerf width, in the molding layer, so as to separate the molding layer into individual molding layers covering one of the plurality of first semiconductor chips and corresponding one of the plurality of second semiconductor chips.
Abstract:
A method of manufacturing a chip-stacked semiconductor package, the method including preparing a base wafer including a plurality of first chips each having a through-silicon via (TSV); bonding the base wafer including the plurality of first chips to a supporting carrier; preparing a plurality of second chips; forming stacked chips by bonding the plurality of second chips to the plurality of first chips; sealing the stacked chips with a sealing portion; and separating the stacked chips from each other.