Abstract:
An optoelectronic component and a method for producing an optoelectronic component are disclosed. In an embodiment a component includes a semiconductor layer sequence having a first semiconductor layer, an active layer, a second semiconductor layer and a top side stacked in the recited order, a first contact layer arranged at the first semiconductor layer, a mirror layer arranged on the top side and a recess in the semiconductor layer sequence which extends from the top side through the entire second semiconductor layer and the active layer, wherein the recess has a bottom surface in a region of the first semiconductor layer, wherein the mirror layer covers a portion of the recess in plan view, wherein the first contact layer is in direct electrical and mechanical contact with a contact pin, and wherein the contact pin extends from the first contact layer to the top side of the semiconductor layer sequence.
Abstract:
An optoelectronic semiconductor chip includes a semiconductor body with an active region provided for generating electromagnetic radiation, a first mirror layer provided for reflecting the electromagnetic radiation, a first encapsulation layer formed with an electrically insulating material, and a carrier provided for mechanically supporting the first encapsulation layer, the first mirror layer and the semiconductor body. The first mirror layer is arranged between the carrier and the semiconductor body. The first encapsulation layer is arranged between the carrier and the first mirror layer. The first encapsulation layer is an ALD layer.
Abstract:
An optoelectronic component includes an optoelectronic semiconductor chip having a first surface on which a first electrical contact and a second electrical contact are arranged, wherein the first surface adjoins a molded body, a first pin and a second pin are embedded in the molded body and electrically conductively connect to the first contact and the second contact, and a protection diode is embedded in the molded body and electrically conductively connect to the first contact and the second contact.
Abstract:
A method for transferring semiconductor bodies and a semiconductor chip are disclosed. In an embodiment a method includes providing a semiconductor structure on a growth substrate, arranging a cover layer on a side of the semiconductor structure facing away from the growth substrate, wherein the cover layer is mechanically fixedly connected to the semiconductor structure, arranging a transfer structure on a side of the cover layer facing away from the semiconductor structure, wherein the transfer structure is mechanically fixedly connected to the cover layer via at least one contact structure, wherein a sacrificial layer is arranged between the cover layer and the transfer structure, and wherein the sacrificial layer does not cover any of the at least one contact structure, removing the growth substrate from the semiconductor structure, subdividing the semiconductor structure into a plurality of semiconductor bodies, arranging a carrier on a side of the semiconductor body facing away from the transfer structure, selectively removing the sacrificial layer and removing the transfer structure from the semiconductor bodies.
Abstract:
An optoelectronic semiconductor component includes a light-emitting semiconductor body having a radiation side, a current expansion layer arranged on the radiation side of the semiconductor body and at least partially covers this side, wherein the current expansion layer includes an electrically-conductive material transparent to the light radiated by the semiconductor body, and particles of a further material, and an electrical contact arranged on a side of the current expansion layer facing away from the semiconductor body.
Abstract:
A method for producing optoelectronic semiconductor components (100) is specified, wherein a carrier (1) having a carrier main side (11) is provided. Furthermore, a plurality of singulated optoelectronic semiconductor chips (2) are provided, wherein the semiconductor chips (2) each have a main emission side (21) and a contact side (22) opposite the main emission side (21). The singulated semiconductor chips (2) are then applied to the carrier main side (11), such that the contact side (22) in each case faces the carrier main side (11). In regions between the semiconductor chips, a mask frame (3) is applied, wherein the mask frame (3) is a grid of partitions (31). In a plan view of the carrier main side (11), each semiconductor chip (2) is surrounded all around by the partitions (31). The semiconductor chips (2) are potted with a conversion material (4) such that a conversion element (41) is respectively formed on the semiconductor chips (2). In this case, the conversion element (41) at least partly covers the main emission side (21) of the respective semiconductor chip (2). The carrier (1) is then removed. In a further step, the optoelectronic semiconductor components (100) are detached from the mask frame (3), the mask frame (3) being destroyed.
Abstract:
A method for producing an optoelectronic semiconductor chip is specified, comprising the following steps: providing an n-conducting layer (2), arranging a p-conducting layer (4) on the n-conducting layer (2), arranging a metal layer sequence (5) on the p-conducting layer (4), arranging a mask (6) at that side of the metal layer sequence (5) which is remote from the p-conducting layer (4), in places removing the metal layer sequence (5) and uncovering the p-conducting layer (4) using the mask (6), and in places neutralizing or removing the uncovered regions (4a) of the p-conducting layer (4) as far as the n-conducting layer (2) using the mask (6), wherein the metal layer sequence (5) comprises at least one mirror layer (51) and a barrier layer (52), and the mirror layer (51) of the metal layer sequence (5) faces the p-conducting layer (4).
Abstract:
A method for producing a component and a component are disclosed. In an embodiment a method includes providing a substrate, applying a composite of components to the substrate, forming an anchoring layer on the composite of components, attaching a carrier to the anchoring layer, wherein the anchoring layer is disposed between the substrate and the carrier and removing the substrate, wherein the composite of components is divided into a plurality of components by forming a plurality of separating trenches, wherein, after removing the substrate, the components continue to be held on the carrier by the anchoring layer, and wherein the anchoring layer comprises at least one predetermined breaking layer having at least one predetermined breaking position, the predetermined breaking position being laterally surrounded by the separating trenches and—in a plan view of the carrier—being covered by one of the components.
Abstract:
A method of producing a plurality of optoelectronic semiconductor components includes a) preparing a composite with a semiconductor layer sequence, wherein the composite includes a plurality of component areas mechanically connected to one another; b) forming a plurality of connecting surfaces on the semiconductor layer sequence, wherein at least one connecting surface is formed on each component area; c) forming a molding compound on the semiconductor layer sequence, wherein the molding compound fills interstices between the connecting surfaces; and d) singulating the composite with the molding compound, wherein during singulation a plurality of molded bodies is formed from the molding compound, each of which is associated with a semiconductor body obtained from a component area of the composite.
Abstract:
An optoelectronic semiconductor component includes an active layer arranged between a p-type semiconductor region and an n-type semiconductor region, a carrier including a plastic and a first via and a second via, a p-contact layer and an n-contact layer arranged between the carrier and a semiconductor body at least in some regions, wherein the p-contact layer electrically joins the first via and the p-type semiconductor region, and the n-contact layer electrically joins the second via and the n-type semiconductor region, a metallic reinforcing layer arranged at least in some regions between the n-contact layer and the carrier, wherein the metallic reinforcing layer is at least 5 μm thick, and at least one p-contact feed-through arranged between the first via and the p-contact layer, wherein the p-contact feed-through is at least 5 μm thick and surrounded in a lateral direction by the reinforcing layer at least in some regions.