Abstract:
A semiconductor device is made by providing a temporary carrier and providing a semiconductor die having a plurality of bumps formed on its active surface. An adhesive material is deposited as a plurality of islands or bumps on the carrier or active surface of the semiconductor die. The adhesive layer can also be deposited as a continuous layer over the carrier or active surface of the die. The semiconductor die is mounted to the carrier. An encapsulant is deposited over the die and carrier. The adhesive material holds the semiconductor die in place to the carrier while depositing the encapsulant. An interconnect structure is formed over the active surface of the die. The interconnect structure is electrically connected to the bumps of the semiconductor die. The adhesive material can be removed prior to forming the interconnect structure, or the interconnect structure can be formed over the adhesive material.
Abstract:
A semiconductor device has an interposer mounted over a carrier. The interposer includes TSV formed either prior to or after mounting to the carrier. An opening is formed in the interposer. The interposer can have two-level stepped portions with a first vertical conduction path through a first stepped portion and second vertical conduction path through a second stepped portion. A first and second semiconductor die are mounted over the interposer. The second die is disposed within the opening of the interposer. A discrete semiconductor component can be mounted over the interposer. A conductive via can be formed through the second die or encapsulant. An encapsulant is deposited over the first and second die and interposer. A portion of the interposer can be removed to that the encapsulant forms around a side of the semiconductor device. An interconnect structure is formed over the interposer and second die.
Abstract:
A semiconductor die has a first insulating material disposed around a periphery of the die. A portion of the first insulating material is removed to form a through hole via (THV). Conductive material is deposited in the THV. A second insulating layer is formed over an active surface of the die. A first passive circuit element is formed over the second insulating layer. A first passive via is formed over the THV. The first passive via is electrically connected to the conductive material in the THV. The first passive circuit element is electrically connected to the first passive via. A third insulating layer is formed over the first passive circuit element. A second passive circuit element is formed over the third insulating layer. A fourth insulating layer is formed over the second passive circuit element. A plurality of semiconductor die is stacked and electrically interconnected by the conductive via.
Abstract:
A semiconductor device has an IPD structure formed over a substrate. First and second electrical devices are mounted to a first surface of the IPD structure. An encapsulant is deposited over the first and second electrical devices and IPD structure. A shielding layer is formed over the encapsulant and electrically connected to a conductive channel in the IPD structure. The conductive channel is connected to ground potential to isolate the first and second electrical devices from external interference. A recess can be formed in the encapsulant material between the first and second electrical devices. The shielding layer extends into the recess. An interconnect structure is formed on a second surface of the IPD structure. The interconnect structure is electrically connected to the first and second electrical devices and IPD structure. A shielding cage can be formed over the first electrical device prior to depositing encapsulant.
Abstract:
A semiconductor device has an integrated passive device (IPD) formed over a substrate. The IPD can be a metal-insulator-metal capacitor or an inductor formed as a coiled conductive layer. A signal interconnect structure is formed over the first side or backside of the substrate. The signal interconnect structure is electrically connected to the IPD. A thin film ZnO layer is formed over the substrate as a part of an electrostatic discharge (ESD) protection structure. The thin film ZnO layer has a non-linear resistance as a function of a voltage applied to the layer. A conductive layer is formed over the substrate. The thin film ZnO layer is electrically connected between the signal interconnect structure and conductive layer to provide an ESD path to protect the IPD from an ESD transient. A ground interconnect structure is formed over the substrate and electrically connects the conductive layer to a ground point.
Abstract:
A semiconductor device is made by forming a build-up interconnect structure over a substrate. A semiconductor die is mounted to the build-up interconnect structure. The semiconductor die is electrically connected to the build-up interconnect structure. A ground pad is formed on the build-up interconnect structure. An encapsulant is formed over the semiconductor die and build-up interconnect structure. A shielding cage can be formed over the semiconductor die prior to forming the encapsulant. A shielding layer is formed over the encapsulant after forming the build-up interconnect structure to isolate the semiconductor die from inter-device interference. The shielding layer conforms to a geometry of the encapsulant and electrically connects to the ground pad. The shielding layer can be electrically connected to ground through a conductive pillar. The substrate is removed. A backside interconnect structure is formed over the build-up interconnect structure, opposite the semiconductor die.
Abstract:
A semiconductor device is made by providing an integrated passive device (IPD). Through-silicon vias (TSVs) are formed in the IPD. A capacitor is formed over a surface of the IPD by depositing a first metal layer over the IPD, depositing a resistive layer over the first metal layer, depositing a dielectric layer over the first metal layer, and depositing a second metal layer over the resistive and dielectric layers. The first metal layer and the resistive layer are electrically connected to form a resistor and the first metal layer forms a first inductor. A wafer supporter is mounted over the IPD using an adhesive material and a third metal layer is deposited over the IPD. The third metal layer forms a second inductor that is electrically connected to the capacitor and the resistor by the TSVs of the IPD. An interconnect structure is connected to the IPD.
Abstract:
A semiconductor device has an integrated passive device (IPD) formed on a substrate. The IPD can be a metal-insulator-metal capacitor or an inductor formed as a coiled conductive layer. A signal interconnect structure is formed on the front side or backside of the substrate. The signal interconnect structure is electrically connected to the IPD. A thin film ZnO layer is formed on the substrate as a part of an electrostatic discharge (ESD) protection structure. The thin film ZnO layer has a non-linear resistance as a function of a voltage applied to the layer. A conductive layer is formed on the substrate. The thin film ZnO layer is electrically connected between the signal interconnect structure and conductive layer to provide an ESD path to protect the IPD from an ESD transient. A ground interconnect structure is formed on the substrate and electrically connects the conductive layer to a ground point.
Abstract:
A method of manufacturing a semiconductor device involves providing a substrate, forming a first passivation layer over the substrate, and forming an integrated passive circuit over the substrate. The integrated passive circuit can include inductors, capacitors, and resistors. A second passivation layer is formed over the integrated passive circuit. System components are mounted to the second passivation layer and electrically connect to the second conductive layer. A mold compound is formed over the integrated passive circuit. A coefficient of thermal expansion of the mold compound is approximately equal to a coefficient of thermal expansion of the system component. The substrate is removed. An opening is etched into the first passivation layer and solder bumps are deposited over the opening in the first passivation layer to electrically connect to the integrated passive circuit. A metal layer can be formed over the molding compound or first passivation layer for shielding.
Abstract:
A semiconductor device is made by forming a first conductive layer over a carrier. The first conductive layer has a first area electrically isolated from a second area of the first conductive layer. A conductive pillar is formed over the first area of the first conductive layer. A semiconductor die or component is mounted to the second area of the first conductive layer. A first encapsulant is deposited over the semiconductor die and around the conductive pillar. A first interconnect structure is formed over the first encapsulant. The first interconnect structure is electrically connected to the conductive pillar. The carrier is removed. A portion of the first conductive layer is removed. The remaining portion of the first conductive layer includes an interconnect line and UBM pad. A second interconnect structure is formed over a remaining portion of the first conductive layer is removed.