摘要:
A metal complex represented by the following Formula (1): (wherein M represents palladium or platinum; L represents a ligand selected from carbon monoxide, an olefin compound, an amine compound, a phosphine compound, an N-heterocyclic carbene compound, a nitrile compound and an isocyanide compound; n represents an integer of 0 to 2 showing the number of the ligand; and each of R1 to R4 represents an organic group). The metal complex described above can be fixed on an inorganic oxide while maintaining a skeletal structure thereof to obtain a supported metal complex, which makes it possible to allow the supported metal complex to maintain the same catalytic activity as that of the original metal complex. Also, calcining the supported metal complex obtained in the manner described above makes it possible to obtain a supported metal catalyst improved in catalytic activity to a greater extent than conventional supported metal catalysts.
摘要:
A method (P) for hydrosilylating at least one compound (C), including at least one unsaturation in the presence of an organosilicon compound (O) including at least one hydrogen atom per molecule bonded directly to a silicon atom, and of a catalytic hydrosilylation system including a structured porous material (A) including pores and an inorganic structure consisting of silicon oxide walls, in which metal nanoparticles are contained.
摘要:
This disclosure relates to a novel method of making and recovering M41S family molecular sieve materials using synthesis mixtures having high solids-content and without a purification step. The solids-content, for example, is in a range from about 20 wt. % to 50 wt. %. The method also includes the step of mixing at least a portion of the M41S made with another material to form a composition, wherein the amount of said material to be mixed with said M41S product is such that said composition having less than 10 wt. % free fluid. The material mixed with the M41S made includes metal oxides, metal nitrides, metal carbides and mixtures thereof, as well as absorptive material capable of absorbing mother liquor and selected from the group consisting of carbon silica, alumina, titania, zirconia and mixtures thereof. The amount of the wastewater generated by this novel method is reduced by at least 50% to as much as 100% as comparing with conventional method of making M41S materials. By reducing and/or eliminating at least a portion of the wastewater generated in the synthesis product, the new method reduces cost of making of M41S materials and provides a more environmentally-friendly synthesis product.
摘要:
The method of obtaining the CMK-3-type carbon replica, consisting of the introduction of SBA-15-type molecular sieve to a mixture of furfuryl alcohol and a solvent, the subsequent polycondensation of furfuryl alcohol, carbonization of the prepared, composite and removal of the hard template, according to the invention, is characterized in that the reaction of furfuryl alcohol polycondensation is carried out by the precipitation method in a slurry containing SBA-15 silica sieve, water, furfuryl alcohol and concentrated solution of hydrochloric acid in mass ratios, respectively, in the range from 1.00:32.33:1.00:6.65 to 1.00:30.83:2.50:16.64, whereas the ratio of the total mass of furfuryl alcohol and water to the mass of SBA-15 as well as the mass ratio of the concentrated HCl solution to the mass of furfuryl alcohol are kept at the constant value every time.
摘要:
A catalyst which comprises nickel and/or cobalt supported on a support that includes a mixed oxide containing metals, such as aluminum, zirconium, lanthanum, magnesium, cerium, calcium, and yttrium. Such catalysts are useful for converting carbon dioxide to carbon monoxide, and for converting methane to hydrogen.
摘要:
One aspect of the present invention relates to mesostructured zeolites. The invention also relates to a method of preparing mesostructured zeolites, as well as using them as cracking catalysts for organic compounds and degradation catalysts for polymers.
摘要:
A wall-flow filter comprises a catalyst for converting oxides of nitrogen in the presence of a reducing agent, which wall-flow filter comprising an extruded solid body comprising: 10-95% by weight of at least one binder/matrix component; 5-90% by weight of a zeolitic molecular sieve, a non-zeolitic molecular sieve or a mixture of any two or more thereof; and 0-80% by weight optionally stabilised ceria, which catalyst comprising at least one metal, wherein: the at least one metal is present throughout the extruded solid body alone or in combination with: is also present in a higher concentration at a surface of the extruded solid body; is also carried in one or more coating layer(s) on a surface of the extruded solid body; or both.
摘要:
An emission control catalyst that exhibits improved CO and HC reduction performance includes a supported platinum-based catalyst, and a supported palladium-gold catalyst. The two catalysts are coated onto different layers, zones, or monoliths of the substrate for the emission control catalyst such that the platinum-based catalyst encounters the exhaust stream before the palladium-gold catalyst. Zeolite may be added to the emission control catalyst as a hydrocarbon absorbing component to boost the oxidation activity of the palladium-gold catalyst.
摘要:
A solid catalyst, consisting of partially halogenated metal oxide or mixed metal oxide or zeolite or zeolite-like solid, represented by a general formula: X(a)/PbMOc(OH)d wherein, X is halogen element selected from F, Cl, Br and I; P is phosphorous element; M is at least one metallic element selected from alkaline earth metals, rare earth metals, group IIIa metals, non-noble transition metals, Sn, Sb, Bi, Si, thorium and uranium; O is oxygen; H is hydrogen; a is the concentration of halogen element X present in the catalyst in the range from 0.01 wt % to 50 wt %; b is the mole ratio of P to M in the range from zero to 1.0; c and d are the number of oxygen and OH groups, respectively, required to satisfy the valence requirement of the metallic and non-metallic elements (M and P); and the ratio of d to c in the range from zero to about 1.0, with or without any catalyst support, useful for the Friedel-Crafts reactions and also its method of preparation are disclosed.