Abstract:
An electronic component includes: an electronic component body; and a lead secured to the electric component and including a projection portion defined by first and second inclined portions facing each other. The solder wettability of the first inclined portion is smaller than the solder wettability of the second inclined portion.
Abstract:
An adaptor for connecting ball grid array components to a circuit board with a leaded grid array joint, utilizing electric leads which can connect to a ball grid array on one end and a leaded grid array pad pattern on the opposite end.
Abstract:
The present invention provides a circuit device in which warpage of a case member is prevented. The circuit device of the present invention includes: a circuit board having on an upper surface thereof a built-in hybrid integrated circuit constituted by a conductive pattern and a circuit element; a case member including four side wall parts forming a frame-like shape and being in contact with the circuit board so as to form on the upper surface of the circuit board a space in which the circuit element is sealed; and a lead being fixed to a pad composed of the conductive pattern and extending to the outside. The circuit device of the present invention is further provided with a supporting part arranged at a corner of the case member so as to make continuous inner walls of the respective side wall parts with each other.
Abstract:
An interconnection apparatus and a method of forming an interconnection apparatus. Contact structures are attached to or formed on a first substrate. The first substrate is attached to a second substrate, which is larger than the first substrate. Multiple such first substrates may be attached to the second substrate in order to create an array of contact structures. Each contact structure may be elongate and resilient and may comprise a core that is over coated with a material that imparts desired structural properties to the contact structure.
Abstract:
A contact lead for engaging with an aperture lead of a circuit carrier, including a substrate contact portion electrically connected to a pad on a substrate a chip contact portion extending from the substrate contact portion and forming an angle with the substrate contact portion raising from the substrate. The contact lead chip contact portion may also be of a cylindrical shape vertically extending from the substrate contact portion. The present invention also provides a module including a printed circuit board having a plurality of pad thereon ,the contact lead electrically connected to the pad, an integrated circuit carrier having a plurality of aperture leads, the aperture leads passing through the contact lead and contacting respectively thereof, and a housing structure for housing the module and providing access for the user to assemble the integrated circuit carrier.
Abstract:
A probe card assembly includes a probe card, a space transformer having resilient contact structures (probe elements) mounted directly to (i.e., without the need for additional connecting wires or the like) and extending from terminals on a surface thereof, and an interposer disposed between the space transformer and the probe card. The space transformer and interposer are “stacked up” so that the orientation of the space transformer, hence the orientation of the tips of the probe elements, can be adjusted without changing the orientation of the probe card. Suitable mechanisms for adjusting the orientation of the space transformer, and for determining what adjustments to make, are disclosed. The interposer has resilient contact structures extending from both the top and bottom surfaces thereof, and ensures that electrical connections are maintained between the space transformer and the probe card throughout the space transformer's range of adjustment, by virtue of the interposer's inherent compliance. Multiple die sites on a semiconductor wafer are readily probed using the disclosed techniques, and the probe elements can be arranged to optimize probing of an entire wafer. Composite interconnection elements having a relatively soft core overcoated by a relatively hard shell, as the resilient contact structures are described.
Abstract:
A system for connecting circuit boards is provided. A plurality of overlapping spaced apart circuit boards have a plurality of conductive pins passing through holes in the circuit boards. A connector includes a flexible sheet insulator and a plurality of conductive surfaces separated and supported by the flexible insulator. At least one of the conductive surfaces has a hole there through and a bent compliant lead extending there from. The hole engages one of the pins, and the complaint lead connects to one of the circuit boards.
Abstract:
Spring contact elements are fabricated by depositing at least one layer of metallic material into openings defined in masking layers deposited on a surface of a substrate which may be an electronic component such as an active semiconductor device. Each spring contact element has a base end, a contact end, and a central body portion. The contact end is offset in the z-axis (at a different height) and in at least one of the x and y directions from the base end. In this manner, a plurality of spring contact elements are fabricated in a prescribed spatial relationship with one another on the substrate. The spring contact elements make temporary (i.e., pressure) or permanent (e.g., joined by soldering or brazing or with a conductive adhesive) connections with terminals of another electronic component to effect electrical connections therebetween. In an exemplary application, the spring contact elements are disposed on a semiconductor devices resident on a semiconductor wafer so that temporary connections can be made with the semiconductor devices to burn-in and/or test the semiconductor devices.
Abstract:
In one aspect of the present invention, subminiature fuses are soldered to a PCB via clips attached to the fuse end caps. The clips are physically attached to the PCB pads, enabling the fuse to be replaced if needed and providing thermal decoupling between the fuse and the heating sinking solder/PCB pads. The fuse and clips can also be picked and placed in one operation. In another aspect, improved fuse clips are provided that include tabs that separate the housing portions of the clips from the heating sinking solder/PCB pads. Such improved clips further enhance thermal decoupling. In a further aspect, an improved fuse is provided, in which the thermal decoupling tabs just described are provided directly with the fuse. In yet a further aspect, a thermally insultive fuse body is provided to further decouple the fuse element from its surroundings.
Abstract:
An electrical connection device and assembly method thereof includes a substrate with a plurality of contacting portions arranged on a surface thereof; a chip module having a plurality of terminals inclining in one direction and compressed and contacted with the contacting portions correspondingly; at least one restricting structure which restricts the chip module to move a distance relative to the substrate depending on the compression deformation of the terminals when the terminals are contacted with the contacting portions; and at least one elastic element just producing deformation when the chip module moves the distance. When the terminals are compressed and contacted with the contacting portions, the restricting structure restricts the chip module to move the distance depending on the compression deformation of the terminals, so that the elastic element just produces deformation, which make the chip module only move in the direction opposite to the deformation direction of the terminals.