Abstract:
A light emitting assembly is described. In one embodiment, one or more light emitting diode (LED) devices and one or more microcontrollers are bonded to a same side of a substrate, with the one or more microcontrollers to switch and drive the one or more LED devices.
Abstract:
A compliant bipolar micro device transfer head array and method of forming a compliant bipolar micro device transfer array from an SOI substrate are described. In an embodiment, a compliant bipolar micro device transfer head array includes a base substrate and a patterned silicon layer over the base substrate. The patterned silicon layer may include first and second silicon interconnects, and first and second arrays of silicon electrodes electrically connected with the first and second silicon interconnects and deflectable into one or more cavities between the base substrate and the silicon electrodes.
Abstract:
A method and structure for forming an array of LED devices is disclosed. The LED devices in accordance with embodiments of the invention may include a confined current injection area in which a current spreading layer protrudes away from a cladding layer in a pillar configuration so that the cladding layer is wider than the current spreading layer pillar.
Abstract:
A nanowire device and a method of forming a nanowire device that is poised for pick up and transfer to a receiving substrate are described. In an embodiment, the nanowire device includes a base layer and a nanowire on and protruding away from a first surface of the base layer. The nanowire may include a core, a shell, and an active layer between the core and the shell. A top electrode layer may be on a second surface of the base layer opposite the first surface and in electrical contact with the core, and a bottom electrode layer may be on and electrical contact with the shell. In an embodiment, the base layer is characterized by a maximum width of the micro scale, and the nanowire is characterized by a maximum width or length of the nano scale.
Abstract:
Light emitting devices and methods of integrating micro LED devices into light emitting device are described. In an embodiment a light emitting device includes a reflective bank structure within a bank layer, and a conductive line atop the bank layer and elevated above the reflective bank structure. A micro LED device is within the reflective bank structure and a passivation layer is over the bank layer and laterally around the micro LED device within the reflective bank structure. A portion of the micro LED device and a conductive line atop the bank layer protrude above a top surface of the passivation layer.
Abstract:
A compliant micro device transfer head and head array are disclosed. In an embodiment a micro device transfer head includes a spring arm having integrated electrode leads that is deflectable into a space between a base substrate and the spring arm.
Abstract:
Micro pick up arrays and methods for transferring micro devices from a carrier substrate are disclosed. In an embodiment, a micro pick up array alignment encoder detects relative position between a micro pick up array having an encoder scale and a target substrate having a corresponding reference scale. In an embodiment, the micro pick up array alignment encoder facilitates alignment of the micro pick up array with the target substrate.
Abstract:
A method and structure for stabilizing an array of micro devices is disclosed. A stabilization layer includes an array of stabilization cavities and array of stabilization posts. Each stabilization cavity includes sidewalls surrounding a stabilization post. The array of micro devices is on the array of stabilization posts. Each micro device in the array of micro devices includes a bottom surface that is wider than a corresponding stabilization post directly underneath the bottom surface.
Abstract:
A stabilization structure includes a stabilization layer on a carrier substrate. The stabilization layer includes an array of staging cavities. An array of micro devices are within the array of staging cavities. Each micro device is laterally attached to a shear release post laterally extending from a sidewall of a staging cavity. A pressure is applied to the array of micro devices from the array of transfer heads to shear the array of micro devices off the shear release posts. The sheared off micro devices are picked up from the carrier substrate using the array of transfer heads.
Abstract:
A display panel and method of manufacture are described. In an embodiment, a display substrate includes a pixel area and a non-pixel area. An array of subpixels and corresponding array of bottom electrodes are in the pixel area. An array of micro LED devices are bonded to the array of bottom electrodes. One or more top electrode layers are formed in electrical contact with the array of micro LED devices. In one embodiment a redundant pair of micro LED devices are bonded to the array of bottom electrodes. In one embodiment, the array of micro LED devices are imaged to detect irregularities.