Abstract:
The present invention relates generally to integrated circuit (IC) chip packaging, and more particularly, to a structure and method of forming a glass interposer having thermally conductive vias in addition to electrically conductive vias. The thermally conductive vias help dissipate heat from one or more IC chips, through the glass interposer, into an organic carrying, and then, into an underlying substrate where it can be dissipated.
Abstract:
An integrated circuit (IC) includes functional logic therein that can be enabled by application of a predefined thermal cycle. The IC includes an enabling fuse operatively coupled to the functional logic, the functional logic being disabled unless enabled by activation of the enabling fuse. A set of thermal sensors are arranged in a physically distributed manner through at least a portion of the IC. A test control macro operatively couples to the set of thermal sensors and the enabling fuse for activating the enabling fuse to enable the functional logic in response to application of a thermal cycle that causes the set of thermal sensors to sequentially experience a thermal condition matching a thermal sequence enabling test. A related method and system for applying the predefined thermal cycle are also provided.
Abstract:
Embodiments of the invention relate to incorporating one or more antennas or inductor coils into a semi-conductor package. A heat spreader or metal sheet is embedded in the package and stamped or otherwise patterned into a spiral or serpentine form. The pattern enables the spreader to function as an inductor or antenna when connected to a semiconductor chip in communication with a printed circuit board.
Abstract:
A 3-dimensional hybrid package including an integrated circuit chip stack formed on a laminate, the integrated chip stack further including a first chip and a second chip. The first chip is connected to the laminate through first solder bumps, each associated with a first through-silicon via (TSV), and first metal leads embedded in a first polymer tape that extends from first peripheral metal pads formed on a back side of the first chip to the laminate. The second chip is connected to the first peripheral metal pads on the back side of the first chip through second solder bumps formed on a front side of the second chip. The second chip is connected to the laminate by second metal leads, embedded in a second polymer tape that extend from second peripheral metal pads formed on a back side of the second chip to the laminate.
Abstract:
Chip packages with improved tamper resistance and methods of using such chip packages to provide improved tamper resistance. A lead frame includes a die attach paddle, a plurality of outer lead fingers, and a plurality of inner lead fingers located between the outer lead fingers and the die attach paddle. A chip is attached to the die attach paddle. The chip includes a surface having an outer boundary and a plurality of bond pads arranged proximate to the outer boundary. A first plurality of wires extend from the outer lead fingers to respective locations on the surface of the chip that are interior of the outer boundary relative to the bond pads. A tamper detection circuit is coupled with the first plurality of wires. A second plurality of wires extend from the inner lead fingers to the bond pads on the chip. The second plurality of wires are located between the lead frame and the first plurality of wires.
Abstract:
A 3-dimensional hybrid package including an integrated circuit chip stack formed on a laminate, the integrated chip stack further including a first chip and a second chip. The first chip is connected to the laminate through first solder bumps, each associated with a first through-silicon via (TSV), and first metal leads embedded in a first polymer tape that extends from first peripheral metal pads formed on a back side of the first chip to the laminate. The second chip is connected to the first peripheral metal pads on the back side of the first chip through second solder bumps formed on a front side of the second chip. The second chip is connected to the laminate by second metal leads, embedded in a second polymer tape that extend from second peripheral metal pads formed on a back side of the second chip to the laminate.
Abstract:
A technique for designing an integrated circuit includes placing standard cells across a first surface of a substrate of an integrated circuit (IC) design. At least two unoccupied regions are located across the first surface that do not include standard cells. Aspect ratios for one or more micro fill vias that can be placed in the at least two unoccupied regions are determined. The one or more micro fill vias are placed in the at least two unoccupied regions. Finally, one or more partial thermal vias are placed from a second surface of the integrated circuit, opposite the first surface, to thermally couple the one or more partial thermal vias to the one or more micro fill vias to create thermal paths from the first surface to the second surface.
Abstract:
An integrated conductive polymer-solder ball structure is provided. The integrated conductive polymer-solder ball structure comprises a sputter seed layer applied to a wafer structure, one or more conductive polymer pad structures applied to the sputtered seed layer at locations on the wafer structure where one or more solder ball structures will be formed, an electroplating layer applied to portions of the one or more conductive polymer pad structures where a photoresist layer has been exposed, and a solder ball formed on each of the electroplating layers thereby forming the one or more solder ball structures.
Abstract:
Various particular embodiments include a method of forming an integrated circuit (IC) device including: forming at least one thermoelectric cooling device over an upper surface of a handle wafer based upon a known location of an elevated temperature region in the IC device; forming a first oxide layer over the handle wafer covering the thermoelectric cooling device; forming a second oxide layer over a donor silicon wafer to form a donor wafer; bonding the donor wafer to the handle wafer at the first oxide layer and the second oxide layer, such that the second oxide layer contacts the first oxide layer on the handle wafer; and forming at least one semiconductor device over the donor silicon wafer side of the donor wafer, wherein the at least one thermoelectric cooling device is located proximate the at least one semiconductor device.